Analytical and Bioanalytical Chemistry

, Volume 386, Issue 5, pp 1321–1326 | Cite as

Reversible immobilization of proteins with streptavidin affinity tags on a surface plasmon resonance biosensor chip

  • Yong-Jin Li
  • Li-Jun Bi
  • Xian-En Zhang
  • Ya-Feng Zhou
  • Ji-Bin Zhang
  • Yuan-Yuan Chen
  • Wei Li
  • Zhi-Ping Zhang
Original Paper

Abstract

Dissociation of biotin from streptavidin is very difficult due to their high binding affinity. The re-use of streptavidin-modified surfaces is therefore almost impossible, making devices containing them (e.g. surface plasmon resonance (SPR) sensor chips) expensive. This paper describes a new protocol for reversible and site-directed immobilization of proteins with streptavidin affinity tags on the streptavidin-coated SPR biosensor chip (SA chip). Two streptavidin affinity tags, nano-tag and streptavidin-binding peptide (SBP tag), were applied. They both can specifically interact with streptavidin but have weaker binding force compared to the biotin–streptavidin system, thus allowing association and dissociation under controlled conditions. The SA chip surface could be regenerated repeatedly without loss of activity by injection of 50 mM NaOH solution. The fusion construct of a SBP tag and a single-chain antibody to mature bovine prion protein (scFv-Z186-SBP) interacts with the SA chip, resulting in a single-chain-antibody-modified surface. The chip showed kinetic response to the prion antigen with equilibrium dissociation constant KD≈4.01×10−7. All results indicated that the capture activity of the SA chip has no irreversible loss after repeated immobilization and regeneration cycles. The method should be of great benefit to various biosensors, biochips and immunoassay applications based on the streptavidin capture surface.

Keywords

Surface plasmon resonance Streptavidin affinity tag Nano-tag Site-directed immobilization Regeneration 

References

  1. 1.
    Johnsson B, Lofas S, Lindquist G (1991) Anal Biochem 198:268–277CrossRefGoogle Scholar
  2. 2.
    Camarero JA, Kwon Y, Coleman MA (2004) J Am Chem Soc 126:14730–14731CrossRefGoogle Scholar
  3. 3.
    Shi JX, Zhang XE, Xie WH, Zhou YF, Zhang ZP, Deng JY, Cass AEG, Zhang ZL, Pang DW, Zhang CG (2004) Anal Chem 76:632–638CrossRefGoogle Scholar
  4. 4.
    Gershon PD, Khilko S (1995) J Immunol Methods 183:65–76CrossRefGoogle Scholar
  5. 5.
    Levy I, Shoseyov O (2001) J Peptide Sci 7:50–57CrossRefGoogle Scholar
  6. 6.
    Schmid AH, Stanca SE, Thakur MS, Thampia KR, Suri CR (2006) Sens Actuators B 113:297–303CrossRefGoogle Scholar
  7. 7.
    Herne TM, Tarlov MJ (1997) J Am Chem Soc 119:8916–8920CrossRefGoogle Scholar
  8. 8.
    Mannelli I, Minunni M, Tombelli S, Wang R, Michela Spiriti M, Mascini M (2005) Bioelectrochemistry 66:129–138CrossRefGoogle Scholar
  9. 9.
    Schmidt TG, Skerra A (1993) Protein Eng 6:109–122CrossRefGoogle Scholar
  10. 10.
    Schmidt TGM, Koepke J, Frank R, Skerra A (1996) J Mol Biol 255:753–766CrossRefGoogle Scholar
  11. 11.
    Keefe AD, Wilson DS, Seelig B, Szostak JW (2001) Protein Expr Purif 23:440–446CrossRefGoogle Scholar
  12. 12.
    Lamla T, Erdmann VA (2004) Protein Expr Purif 33:39–47CrossRefGoogle Scholar
  13. 13.
    Bi LJ, Zhou YF, Zhang XE, Deng JY, Zhang ZP, Xie B, Zhang CG (2003) Anal Chem 75:4113–4119CrossRefGoogle Scholar
  14. 14.
    Voss S, Skerra A (1997) Protein Eng 10:975–982CrossRefGoogle Scholar
  15. 15.
    Zhang JB (2006) PhD Thesis, pp 32–92Google Scholar
  16. 16.
    Wang SH, Wen JK, Zhou YF, Zhang ZP, Yang RF, Zhang JB, Chen J, Zhang XE (2004) Biosens Bioelectron 20:807–813Google Scholar
  17. 17.
    Shao WH, Zhang XE, Liu H, Zhang ZP (2000) Bioconjugate Chem 11:822–826CrossRefGoogle Scholar
  18. 18.
    Zhou YF, Zhang XE, Liu H, Zhang ZP (2001) Bioconjugate Chem 12:924–931CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Yong-Jin Li
    • 1
    • 2
  • Li-Jun Bi
    • 1
  • Xian-En Zhang
    • 1
  • Ya-Feng Zhou
    • 1
  • Ji-Bin Zhang
    • 1
  • Yuan-Yuan Chen
    • 1
  • Wei Li
    • 1
  • Zhi-Ping Zhang
    • 1
  1. 1.Joint research group on analytical biotechnology of State Key Laboratory of MacromoleculesInstitute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
  2. 2.Graduate SchoolChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations