Analytical and Bioanalytical Chemistry

, Volume 387, Issue 1, pp 41–44 | Cite as

Single-molecule tracking in eukaryotic cell nuclei

  • Jan Peter Siebrasse
  • David Grünwald
  • Ulrich KubitscheckEmail author


Visualization of single fluorescent molecules (single-molecule tracking, SMT) within cells provides a real-time molecular view of physiological processes in vivo [ 1, 2]. Prerequisites for optical intracellular single-molecule detection are the reduction of background fluorescence, optimization of light transmission in the microscope, utilization of laser light sources for excitation, and high-sensitivity and high-speed CCD camera systems for signal detection in combination with digital image processing (Fig.  1). Also, it is essential to use fluorescence labels of the highest photostability [ 3, 4], especially if autofluorescent proteins are employed [ 5, 6]. Microscopic imaging of single fluorescent molecules produces diffraction-limited light spots in the image plane. The corresponding intensity pattern can be well approximated by a two-dimensional Gaussian with a full width at half maximum of approximately 250 nm, when light with a wavelength of 500 nm and an objective...


Splice Factor Fluorescence Correlation Spectroscopy Supramolecular Complex Single Fluorescent Molecule Small Nuclear Ribonucleoprotein Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



U.K. gratefully acknowledges financial support by the Volkswagen Foundation (Grant I/78852) and the German Research Foundation (Grant Ku 1507/1-2).

Supplementary material

Movie 1

Single U1 snRNPs diffusing and binding within a living HeLa cell nucleus. Left hand side original but contrast-enhanced data. Right hand side movie data was filtered using a spot-enhancing filter (3-pixel diameter, see ref. [8]) to improve U1 snRNP visibility. The movie was recorded at 200 Hz, the total object field corresponded to an area of 12.2×12.2 μm2 (AVI 3.78 mb)


  1. 1.
    Sako Y, Yanagida T (2003) Nat Cell Biol Ss1–Ss5Google Scholar
  2. 2.
    Tinnefeld P, Sauer M (2005) Angew Chem Int Ed Engl 44:2642–2671CrossRefGoogle Scholar
  3. 3.
    Kues T, Peters R, Kubitscheck U (2001) Biophys J 80:2954–2967Google Scholar
  4. 4.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544CrossRefGoogle Scholar
  5. 5.
    Harms GS, Cognet L, Lommerse PH, Blab GA, Schmidt T (2001) Biophys J 80:2396–2408CrossRefGoogle Scholar
  6. 6.
    Steinmeyer R, Noskov A, Krasel C, Weber I, Dees C, Harms GS (2005) J Fluoresc 15:707–721CrossRefGoogle Scholar
  7. 7.
    Thompson RE, Larson DR, Webb WW (2002) Biophys J 82:2775–2783Google Scholar
  8. 8.
    Sage D, Neumann FR, Hediger F, Gasser SM, Unser M (2005) IEEE Trans Image Process 14:1372–1383CrossRefGoogle Scholar
  9. 9.
    Bausinger R, von Gersdorff K, Braeckmans K, Ogris M, Wagner E, Brauchle C, Zumbusch A (2006) Angew Chem Int Ed Engl 45:1568–1572CrossRefGoogle Scholar
  10. 10.
    Saxton MJ, Jacobson K (1997) Ann Rev Biophys Biomol Struct 26:373–399CrossRefGoogle Scholar
  11. 11.
    Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH (2004) Science 304:1797–1800CrossRefGoogle Scholar
  12. 12.
    Kubitscheck U, Grunwald D, Hoekstra A, Rohleder D, Kues T, Siebrasse JP, Peters R (2005) J Cell Biol 168:233–243CrossRefGoogle Scholar
  13. 13.
    Goulian M, Simon SM (2000) Biophys J 79:2188–2198Google Scholar
  14. 14.
    Grunwald D, Spottke B, Buschmann V, Kubitscheck U (2006) Mol Biol Cell (in press)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jan Peter Siebrasse
    • 1
  • David Grünwald
    • 1
  • Ulrich Kubitscheck
    • 1
    Email author
  1. 1.Department of Biophysical Chemistry, Institute for Physical and Theoretical ChemistryUniversity of BonnBonnGermany

Personalised recommendations