Analytical and Bioanalytical Chemistry

, Volume 386, Issue 6, pp 1803–1813 | Cite as

Kinetic speciation of nickel in mining and municipal effluents

  • Parthasarathi Chakraborty
  • Yamini Gopalapillai
  • John Murimboh
  • Ismail I. Fasfous
  • Chuni L. Chakrabarti
Original Paper


This study presents the results of kinetic speciation of nickel in undiluted mining and municipal effluents and effluents diluted with receiving freshwaters from the surrounding environment. The dilution ratios used for the dilution of the effluents were arbitrarily chosen, but were representative of the prevailing mining practices. The purpose of the this dilution was to mimic dilution with natural waters that result from dilution of the mining and municipal effluents with receiving freshwaters, so that this study would reveal environmental realities that are of concern to the managers and regulators of water resources.

Ligand exchange kinetics using the competing ligand exchange method (CLEM) was studied using two independent techniques: graphite furnace atomic absorption spectrometry (GFAAS) with Chelex 100 resin as the competing ligand, and adsorptive cathodic stripping voltammetry (AdCSV) with dimethylglyoxime (DMG) as the competing ligand to determine the percentage of Ni metal released from Ni(II)–DOC complexes and the rate of dissociation of Ni(II)–DOC complexes. Using a sample containing a mixture of 30% Copper Cliff Mine effluent, 40% Sudbury municipal effluent and 30% Vermillion River water, both techniques gave results showing that the dilution of the effluent samples increased the percentage of nickel released from Ni(II)–DOC complexes. This increase in the release of nickel from the Ni(II)–DOC complexes may be of concern to managers and regulators of water resources. Agreement between the results of these two techniques has enhanced the validity of the competing ligand exchange method used by both techniques.


Nickel speciation Mine effluent Competing ligand exchange method Release of nickel Dissolved Organic Carbon Adsorptive Cathodic Stripping Voltammetry Graphite Furnace Atomic Absorption Spectrometry 



The financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada and the NSERC Metals in the Human Environment - Research Network are gratefully acknowledged.


  1. 1.
    Morel FMM, Hering JG (1993) Principles of aquatic chemistry. Wiley, New York, USA, p 360Google Scholar
  2. 2.
    Vermeer AWP, McCulloch JK, Van Riemsdijk WH, Koopal LK (1999) Environ Sci Technol 33:3892–3897CrossRefGoogle Scholar
  3. 3.
    Langsto WJ, Bryan GW (1984) In: Kramer CJM, Duinker JC (eds) Complexation of trace metals in natural waters. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands, p 375Google Scholar
  4. 4.
    Brown GK, Cabaniss SE, MacCarthy P, Leenheer JA (1999) Anal Chim Acta 402:183–193CrossRefGoogle Scholar
  5. 5.
    Morel FMM, Hering JG (1993) Principles of aquatic chemistry. Wiley, New York, USA, p 377Google Scholar
  6. 6.
    Sutton R, Sposito G (2005) Environ Sci Technol 39:9009–9015CrossRefGoogle Scholar
  7. 7.
    Morel FMM, Hering JG (1993) Principles of aquatic chemistry. Wiley, New York, USA, p 362Google Scholar
  8. 8.
    Xue HB, Kistler D, Sigg L (1995) Limnol Oceanogr 40:1142–1152CrossRefGoogle Scholar
  9. 9.
    Mandal R, Salam MSA, Murimboh J, Hassan NM, Chakrabarti CL, Back MH, Gregoire DC, Scrhoeder WH (1999) Anal Chim Acta 395:323–334CrossRefGoogle Scholar
  10. 10.
    Kinniburgh DC, Tipping E (2001) Environ Sci Technol 35:2049–2059CrossRefGoogle Scholar
  11. 11.
    Christl I, Kretzschmar R (2001) Environ Sci Technol 35:2505–2511CrossRefGoogle Scholar
  12. 12.
    Larsson JA, Pardue HL (1989) Anal Chim Acta 224:289–303CrossRefGoogle Scholar
  13. 13.
    Olson DL, Shuman MS (1983) Anal Chem 55:1103–1107Google Scholar
  14. 14.
    Olson DL, Shuman MS (1985) Geochim Cosmochim Acta 49:1371–1375CrossRefGoogle Scholar
  15. 15.
    Schechter I (1991) Anal Chem 63:1303–1307CrossRefGoogle Scholar
  16. 16.
    Langford CH, Cook RL (1995) Analyst 120:591–596CrossRefGoogle Scholar
  17. 17.
    Hering JG, Morel FMM (1988) Environ Sci Technol 22:1469–1478CrossRefGoogle Scholar
  18. 18.
    Haraldsson C, Lyven B, Pollak M, Skoog A (1993) Anal Chim Acta 284:327–336CrossRefGoogle Scholar
  19. 19.
    Ammann AA (2002) Anal Bioanal Chem 372:448–452CrossRefGoogle Scholar
  20. 20.
    Heltai Gy, Percsich K, Fekete I, Barabas B, Jozsa T (2000) Microchem J 67:43–51CrossRefGoogle Scholar
  21. 21.
    Temminghoff EJM, Plette, ACC, Van Eck R, Van Riemsdijk WH (2000) Anal Chim Acta 417:149–157CrossRefGoogle Scholar
  22. 22.
    Sedykh EM, Starshinova NP, Bannykh LN, Yu EE, Venitsianov EV (2000) Zh Anal Khim 55:344–349Google Scholar
  23. 23.
    Sturgeon RE (1997) Spectrochim Acta B 52:1451–1457CrossRefGoogle Scholar
  24. 24.
    Wang J (1994) Analytical electrochemistry. VCH, New York, p 32Google Scholar
  25. 25.
    Chakrabarti CL, Back MH, Gregoire DC, Schroeder WH (1994) Anal Chim Acta 293:95–108CrossRefGoogle Scholar
  26. 26.
    Chakrabarti CL, Lu Y, Cheng J, Grégoire DC, Back MH, Schroeder WH (1993) Anal Chim Acta 267:47–54CrossRefGoogle Scholar
  27. 27.
    Mandal R. Ph.D Thesis, Carleton University, Ottawa, Canada 2001Google Scholar
  28. 28.
    Campbell PGC (1995) Metal speciation and bioavailability in aquatic systems. Wiley, New York, p 45Google Scholar
  29. 29.
    Guthrie JW, Mandal R, Salam MS, Hassan NM, Murimboh J, Chakrabarti CL, Back MH, Gregoire DC (2003) Anal Chim Acta 480:157–169CrossRefGoogle Scholar
  30. 30.
    Buffle J, Altmann RS, Fillela M (1990) Anal Chim Acta 232:225–237CrossRefGoogle Scholar
  31. 31.
    Lavigne JA, Langford CH, Mark MKS (1987) Anal Chem 59:2616–2620CrossRefGoogle Scholar
  32. 32.
    Morel FMM (1993) Principles of aquatic chemistry. Wiley, New York, p 388Google Scholar
  33. 33.
    Chakraborty P, Chakrabarti CL (2006) Anal Chim Acta 571:260–269CrossRefGoogle Scholar
  34. 34.
    Sekaly ALR (2001) PhD Thesis, Carleton University, Ottawa, CanadaGoogle Scholar
  35. 35.
    Filella M, Buffle J, van Leeuwen HP (1990) Anal Chim Acta 232:209–232CrossRefGoogle Scholar
  36. 36.
    Buffle J, Altmann RS, Filella M, Tessier A (1990) Geochim Cosmochim Acta 54:1535–1553CrossRefGoogle Scholar
  37. 37.
    Town RM, Filella M (2000) Limnol Oceanogr 45:1341–1357CrossRefGoogle Scholar
  38. 38.
    Tipping E (1998) Aquatic Geochem 4:3CrossRefGoogle Scholar
  39. 39.
    Tipping E (1993) Colloids Surf A 73:117CrossRefGoogle Scholar
  40. 40.
    Tipping E, Hurley MA (1992) Geochim Cosmochim Acta 56:3627CrossRefGoogle Scholar
  41. 41.
    Tipping E (1994) Comp Geosci 20:973CrossRefGoogle Scholar
  42. 42.
    Dwane GC, Tipping E (1998) Environ Int 24:609–616CrossRefGoogle Scholar
  43. 43.
    Cabaniss SE, Shuman MS (1988) Geochim Cosmochim Acta 52:185–193CrossRefGoogle Scholar
  44. 44.
    Bryan SE, Tipping E, Hamilton-Taylor J (2002) Comp Biochem Physiol C 133:37–49Google Scholar
  45. 45.
    Nolan AL, Mclaughlin MJ, Mason SD (2003) Environ Sci Technol 37:90–98CrossRefGoogle Scholar
  46. 46.
    Tipping E, Lofts S, Lawlor AJ (1998) Sci Tot Environ 210–211:63–77CrossRefGoogle Scholar
  47. 47.
    Lofts S, Tipping E (2000) Sci Tot Environ 251–252:381–399CrossRefGoogle Scholar
  48. 48.
    Tipping E, Rey-Castro C, Bryan SE, Hamilton-Taylor J (2002) Geochim Cosmochim Acta 66:3211–3224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Parthasarathi Chakraborty
    • 1
  • Yamini Gopalapillai
    • 1
  • John Murimboh
    • 2
  • Ismail I. Fasfous
    • 1
  • Chuni L. Chakrabarti
    • 1
  1. 1.Ottawa-Carleton Chemistry Institute, Department of ChemistryCarleton UniversityOttawaCanada
  2. 2.Department of ChemistryAcadia UniversityWolfvilleCanada

Personalised recommendations