Analytical and Bioanalytical Chemistry

, Volume 387, Issue 5, pp 1749–1757 | Cite as

Raman spectroscopic investigation of the antimalarial agent mefloquine

Original Paper

Abstract

The antimalarial agent mefloquine was investigated using Fourier transform near-infrared (FT NIR) Raman and FT IR spectroscopy. The IR and Raman spectra were calculated with the help of density functional theory (DFT) and a very good agreement with the experimental spectra was achieved. These DFT calculations were applied to unambiguously assign the prominent features in the experimental vibrational spectra. The calculation of the potential energy distribution (PED) and the atomic displacements provide further valuable insight into the molecular vibrations. The most prominent NIR Raman bands at 1,363 cm−1 and 1,434 cm−1 are due to C=C stretching (in the quinoline part of mefloquine) and CH2 wagging vibrations, while the most intense IR peaks at 1,314 cm−1; 1,147 cm−1; and 1,109 cm−1 mainly consist of ring breathings and δCH (quinoline); C–F stretchings; and asymmetric ring breathings, C–O stretching as well as CH2 twisting/rockings located at the piperidine moiety. Since the active agent (mefloquine) is usually present in very low concentrations within the biological samples, UV resonance Raman spectra of physiological solutions of mefloquine were recorded. By employing the detailed non-resonant mode assignment it was also possible to unambiguously identify the resonantly enhanced modes at 1,619 cm−1, 1,603 cm−1 and 1,586 cm−1 in the UV Raman spectra as high symmetric C=C stretching vibrations in the quinoline part of mefloquine. These spectroscopic results are important for the interpretation of upcoming in vitro and in vivo mefloquine target interaction experiments.

Keywords

UV resonance Raman Raman spectroscopy Malaria Mefloquine Density functional theory calculation (DFT) 

References

  1. 1.
  2. 2.
    Hastings IM, Bray PG, Ward SA (2002) Science 298:74–74CrossRefGoogle Scholar
  3. 3.
    Ridley RG (2002) Nature 415:686–693CrossRefGoogle Scholar
  4. 4.
    Constantinidis I, Satterlee JD (1988) J Am Chem Soc 110:927–932CrossRefGoogle Scholar
  5. 5.
    Constantinidis I, Satterlee JD (1988) J Am Chem Soc 110:4391–4395CrossRefGoogle Scholar
  6. 6.
    Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) Nature 404:307–310CrossRefGoogle Scholar
  7. 7.
    Buller R, Peterson ML, Almarsson Ö, Leisirowitz L (2002) Cryst Growth Des 2:(6) 553–562CrossRefGoogle Scholar
  8. 8.
    Frosch T, Schmitt M, Schenzel K, Faber JH, Bringmann G, Kiefer W, Popp J (2006) Biopolymers 82:295–300CrossRefGoogle Scholar
  9. 9.
    MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, JA Montgomery Jr, T Vreven, KN Kudin, JC Burant, JM Millam, SS Iyengar, J Tomasi, V Barone, B Mennucci, M Cossi, G Scalmani, N Rega, GA Petersson, H Nakatsuji, M Hada, M Ehara, K Toyota, R Fukuda, J Hasegawa, M Ishida, T Nakajima, Y Honda, O Kitao, H Nakai, M Klene, X Li, JE Knox, HP Hratchian, JB Cross, C Adamo, J Jaramillo, R Gomperts, RE Stratmann, O Yazyev, AJ Austin, R Cammi, C Pomelli, JW Ochterski, PY Ayala, K Morokuma, GA Voth, P Salvador, J Dannenberg, VG Zakrzewski, S Dapprich, AD Daniels, MC Strain, O Farkas, DK Malick, AD Rabuck, K Raghavachari, JB Foresman, JV Ortiz, Q Cui, AG Baboul, S Clifford, J Cioslowski, BB Stefanov, G Liu, A Liashenko, P Piskorz, I Komaromi, RL Martin, DJ Fox, T Keith, MA Al-Laham, CY Peng, A Nanayakkara, M Challacombe, PM W Gill, B Johnson, W Chen, MW Wong, C Gonzalez, JA Pople (2004) Gaussian 03, Revision C 02. Gaussian, Wallingford CT, Google Scholar
  10. 10.
    Petry R, Schmitt M Popp J (2003) ChemPhysChem 4:14–30 (and refs cited therein)CrossRefGoogle Scholar
  11. 11.
    McHale JL (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chichester (and refs cited therein)Google Scholar
  12. 12.
    Becke AD (1992) J Chem Phys 97:9173; AD Beck (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  13. 13.
    Perdew JP, Wang Y (1992) Phys Rev B45:13244; Perdew, JP, Chevary JA, Vosko, SH Jackson, KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B46:6671Google Scholar
  14. 14.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  15. 15.
    Lee C, Yang W, Parr RG (1988) Phys Rev B37:785Google Scholar
  16. 16.
    Pople JA, Schlegel HB, Krishnan R, Defrees DJ, Binkley JS, Frisch MJ, Whitside RA (1981) Int J Quantum Chem Quant Chem Symp 15:269–278; MJ Frisch, JA Pople, JS Binkley (1984) J Chem Phys 80(7):3265–3269 (and refs therein); Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51(6):2657–2664 (and refs cited therein)Google Scholar
  17. 17.
    Bright E, Wilson, JR (1941) J Chem Phys 9:76–84; Wilson E Jr (1939) J Chem Phys 7:1047–1052; Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New YorkGoogle Scholar
  18. 18.
    Martin JML, Van Alsenoy C (1995) GAR2PED. University of AntwerpGoogle Scholar
  19. 19.
    Frosch T, Küstner B, Schlücker S, Szeghalmi M, Schmitt W, Kiefer J, Popp J (2004) Raman Spectrosc 35:819–821CrossRefGoogle Scholar
  20. 20.
    Neugebauer J, Hess BA (2003) J Chem Phys 118 (16) 7215–7225CrossRefGoogle Scholar
  21. 21.
    Scott AP, Radom L (1996) J Phys Chem 100:16502–16513CrossRefGoogle Scholar
  22. 22.
    El-Azhary AA, Suter HU (1996) J Phys Chem 100:15056–15063CrossRefGoogle Scholar
  23. 23.
    Baker J, Jarzecki AA, Pulay P (1998) J Phys Chem A 102:1412–1424CrossRefGoogle Scholar
  24. 24.
    Rauhut G, Pulay P (1995) J Phys Chem 99:3093–3100CrossRefGoogle Scholar
  25. 25.
    Halls MD, Schlegel B (1998) J Chem Phys 109 (24):10587–10593CrossRefGoogle Scholar
  26. 26.
    Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937–2941CrossRefGoogle Scholar
  27. 27.
    Boese AD, JML Martin (2003) J Chem Phys 119, 6:3005–3014CrossRefGoogle Scholar
  28. 28.
    Wiberg KB (2004) J Comput Chem 25:1342–1346CrossRefGoogle Scholar
  29. 29.
    Figgen D, Metz B, Stoll H, Rauhut G (2002) J Phys Chem A 106:6810–6816CrossRefGoogle Scholar
  30. 30.
    Liu R, Zhou X, Pulay P (1992) J Phys Chem 96:8336–8339CrossRefGoogle Scholar
  31. 31.
    Forgarais G, Zhou X, Taylor PW, Pulay P (1992) J Am Chem Soc 114:8191–8201CrossRefGoogle Scholar
  32. 32.
    Forgarasi G, Pulay P (1986) J Mol Struc 141:145–152CrossRefGoogle Scholar
  33. 33.
    Pulay P, Fogarasi G, Pongor G, Boggs JF, Vargha A (1983) J Am Chem Soc 105:7037–7047CrossRefGoogle Scholar
  34. 34.
    Pulay P, Fogarasi G, Pang F, Boggs JF (1979) J Am Chem Soc 101:10, 2550–2560CrossRefGoogle Scholar
  35. 35.
    Wong MW (1996) Chem Phys Lett 256:391–399CrossRefGoogle Scholar
  36. 36.
    Bauschlicher CW, Langhoff SR (1997) Spectrochim Acta Part A 53:1225–1240CrossRefGoogle Scholar
  37. 37.
    Halls MD, Velovski J, Schlegel HB (2001) Theor Chem Ac 105:43–421Google Scholar
  38. 38.
    Olivaro PL, Goldberg DE (1995) Parasit Today 11(8):294–297; Hawley SR, Bray PG, O’Neill PM, Park BK, Ward SA (1996) Biochem Pharmacol 52:723–733; Yayon A, Cabantchik ZI, Ginsburg H (1984) EMBO J 3(11):2695–2700 ; Ginsburg H, Geary TG (1987) Biochem Pharmacol 36(10):1567–1576Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Torsten Frosch
    • 1
  • Michael Schmitt
    • 1
  • Jürgen Popp
    • 1
    • 2
  1. 1.Institut für Physikalische ChemieFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institut für Physikalische Hochtechnologie e.V.JenaGermany

Personalised recommendations