Advertisement

Beyond quorum sensing: the complexities of prokaryotic parliamentary procedures

  • Anne K. DunnEmail author
  • Eric V. Stabb
Review

Abstract

Bacterial quorum-sensing regulatory systems can be summarized in a simple model wherein an autoinducer molecule accumulates in cultures and stimulates regulatory changes in gene expression upon reaching a critical threshold concentration. Although quorum sensing was originally thought to be an isolated phenomenon governing the regulation of a handful of processes in only a few bacteria, it is now considered to be a widespread mechanism for coordinating bacterial gene expression. Over decades of research, investigations of autoinducer-mediated regulation have revealed that these systems are far more complicated than originally appreciated, and such discoveries have accelerated recently with the application of molecular and genomic tools. The focus of this review is to highlight recent advances describing complexities that go beyond the simple model of quorum sensing. These complexities include the regulation of autoinducer production and degradation, the presence of multiple quorum-sensing systems in individual bacteria that regulate diverse genes, often in coordination with other regulatory elements, and the influence of interorganismal interactions on quorum sensing.

Keywords

Vibrio fischeri Pseudomonas aeruginosa Acyl homoserine lactone AI-2 Bioluminescence 

Notes

Acknowledgements

This work was supported by CAREER award MCB-0347317 from the National Science Foundation to EVS. The authors thank J.L. Bose for contributing to Fig. 2.

References

  1. 1.
    Greenberg EP (1997) ASM News 63:371–377Google Scholar
  2. 2.
    Hastings J, Greenberg E (1999) J Bacteriol 181:2667–2668Google Scholar
  3. 3.
    Nealson K (1999) In: Dunny, G, Winans S (eds) Cell–cell signaling in bacteria. American Society for Microbiology, Washington, DC, pp 277–289Google Scholar
  4. 4.
    Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Biochemistry 20:2444–2449CrossRefGoogle Scholar
  5. 5.
    Nealson KH, Platt T, Hastings JW (1970) J Bacteriol 104:313–322Google Scholar
  6. 6.
    Farghaly AH (1950) J Cell Physiol 36:165–183CrossRefGoogle Scholar
  7. 7.
    Engebrecht J, Nealson K, Silverman M (1983) Cell 32:773–781CrossRefGoogle Scholar
  8. 8.
    Engebrecht J, Silverman M (1984) Proc Natl Acad Sci USA 81:4154–4158Google Scholar
  9. 9.
    Kaplan HB, Greenberg EP (1985) J Bacteriol 163:1210–1214Google Scholar
  10. 10.
    Harvey E (1952) Bioluminescence. Academic, New YorkGoogle Scholar
  11. 11.
    Jones B, Nishiguchi M (2004) Mar Biol 144:1151–1155CrossRefGoogle Scholar
  12. 12.
    Stabb E (2005) ASM News 71:223–229Google Scholar
  13. 13.
    de Kievit TR, Iglewski BH (2000) Infect Immun 68:4839–4849CrossRefGoogle Scholar
  14. 14.
    Waters CM, Bassler BL (2005) Annu Rev Cell Dev Biol 21:319–346CrossRefGoogle Scholar
  15. 15.
    Fuqua WC, Eberhard A (1999) In: Dunny G, Winans SC (eds) Cell–cell signaling in bacteria. ASM, Washington, DC, pp 211–230Google Scholar
  16. 16.
    Manefield M, Turner SL (2002) Microbiology 148:3762–3764Google Scholar
  17. 17.
    Lyon GJ, Novick RP (2004) Peptides 25:1389–1403CrossRefGoogle Scholar
  18. 18.
    Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Proc Natl Acad Sci USA 96:11229–11234CrossRefGoogle Scholar
  19. 19.
    Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM (2004) Mol Cell 15:677–687CrossRefGoogle Scholar
  20. 20.
    Schauder S, Shokat K, Surette MG, Bassler BL (2001) Mol Microbiol 41:463–476CrossRefGoogle Scholar
  21. 21.
    Fuqua WC, Winans SC, Greenberg EP (1994) J Bacteriol 176:269–275Google Scholar
  22. 22.
    Seed PC, Passador L, Iglewski BH (1995) J Bacteriol 177:654–659Google Scholar
  23. 23.
    Hao G, Burr TJ (2006) J Bacteriol 188:2173–2183CrossRefGoogle Scholar
  24. 24.
    Pestova EV, Havarstein LS, Morrison DA (1996) Mol Microbiol 21:853–862CrossRefGoogle Scholar
  25. 25.
    Schuster M, Greenberg EP (2006) Int J Med Microbiol 296:73–81CrossRefGoogle Scholar
  26. 26.
    Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) Mol Microbiol 21:1137–1146CrossRefGoogle Scholar
  27. 27.
    Whiteley M, Parsek MR, Greenberg EP (2000) J Bacteriol 182:4356–4360CrossRefGoogle Scholar
  28. 28.
    Dunlap PV (1989) J Bacteriol 171:1199–1202Google Scholar
  29. 29.
    Dunlap PV, Greenberg EP (1985) J Bacteriol 164:45–50Google Scholar
  30. 30.
    Huang JJ, Petersen A, Whiteley M, Leadbetter JR (2006) Appl Environ Microbiol 72:1190–1197CrossRefGoogle Scholar
  31. 31.
    Zhang HB, Wang LH, Zhang LH (2002) Proc Natl Acad Sci USA 99:4638–4643CrossRefGoogle Scholar
  32. 32.
    Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Appl Environ Microbiol 69:5941–5949CrossRefGoogle Scholar
  33. 33.
    Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Camara M, Williams P, Quax WJ (2006) Infect Immun 74:1673–1682CrossRefGoogle Scholar
  34. 34.
    Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002) Mol Microbiol 45:1277–1287CrossRefGoogle Scholar
  35. 35.
    Zhang HB, Wang C, Zhang LH (2004) Mol Microbiol 52:1389–1401CrossRefGoogle Scholar
  36. 36.
    Taga ME, Semmelhack JL, Bassler BL (2001) Mol Microbiol 42:777–793CrossRefGoogle Scholar
  37. 37.
    De Keersmaecker SC, Sonck K, Vanderleyden J (2006) Trends Microbiol 14:114–119CrossRefGoogle Scholar
  38. 38.
    Mok KC, Wingreen NS, Bassler BL (2003) Embo J 22:870–881CrossRefGoogle Scholar
  39. 39.
    Xavier KB, Bassler BL (2003) Curr Opin Microbiol 6:191–197CrossRefGoogle Scholar
  40. 40.
    Beeston AL, Surette MG (2002) J Bacteriol 184:3450–3456CrossRefGoogle Scholar
  41. 41.
    Wang L, Hashimoto Y, Tsao CY, Valdes JJ, Bentley WE (2005) J Bacteriol 187:2066–2076CrossRefGoogle Scholar
  42. 42.
    Taga ME, Miller ST, Bassler BL (2003) Mol Microbiol 50:1411–1427CrossRefGoogle Scholar
  43. 43.
    Xavier KB, Bassler BL (2005) J Bacteriol 187:238–248CrossRefGoogle Scholar
  44. 44.
    DeLisa MP, Valdes JJ, Bentley WE (2001) Biotechnol Bioeng 75:439–450CrossRefGoogle Scholar
  45. 45.
    DeLisa MP, Valdes JJ, Bentley WE (2001) J Bacteriol 183:2918–2928CrossRefGoogle Scholar
  46. 46.
    Surette MG, Bassler BL (1999) Mol Microbiol 31:585–595CrossRefGoogle Scholar
  47. 47.
    Redfield RJ (2002) Trends Microbiol 10:365–370CrossRefGoogle Scholar
  48. 48.
    Gilson L, Kuo A, Dunlap PV (1995) J Bacteriol 177:6946–6951Google Scholar
  49. 49.
    Lupp C, Ruby EG (2004) J Bacteriol 186:3873–3881CrossRefGoogle Scholar
  50. 50.
    Bassler BL, Wright M, Silverman MR (1994) Mol Microbiol 13:273–286CrossRefGoogle Scholar
  51. 51.
    Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Embo J 22:3803–3815CrossRefGoogle Scholar
  52. 52.
    Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) J Bacteriol 185:2066–2079CrossRefGoogle Scholar
  53. 53.
    Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) J Bacteriol 185:2080–2095CrossRefGoogle Scholar
  54. 54.
    Schuster M, Hawkins AC, Harwood CS, Greenberg EP (2004) Mol Microbiol 51:973–985CrossRefGoogle Scholar
  55. 55.
    Yarwood JM, Volper EM, Greenberg EP (2005) Proc Natl Acad Sci USA 102:9008–9013CrossRefGoogle Scholar
  56. 56.
    Juhas M, Eberl L, Tummler B (2005) Environ Microbiol 7:459–471CrossRefGoogle Scholar
  57. 57.
    Nyholm SV, McFall-Ngai MJ (2004) Nat Rev Microbiol 2:632–642CrossRefGoogle Scholar
  58. 58.
    Ruby EG (1999) J Mol Microbiol Biotechnol 1:13–21Google Scholar
  59. 59.
    Visick KL (2005) J Bacteriol 187:3603–3606CrossRefGoogle Scholar
  60. 60.
    Lupp C, Ruby EG (2005) J Bacteriol 187:3620–3629CrossRefGoogle Scholar
  61. 61.
    Lupp C, Urbanowski M, Greenberg EP, Ruby EG (2003) Mol Microbiol 50:319–331CrossRefGoogle Scholar
  62. 62.
    Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG (2000) J Bacteriol 182:4578–4586CrossRefGoogle Scholar
  63. 63.
    Boettcher KJ, Ruby EG (1990) J Bacteriol 172:3701–3706Google Scholar
  64. 64.
    Lee KH, Ruby EG (1994) J Bacteriol 176:1985–1991Google Scholar
  65. 65.
    Callahan SM, Dunlap PV (2000) J Bacteriol 182:2811–2822CrossRefGoogle Scholar
  66. 66.
    Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) J Bacteriol 178:6618–6622Google Scholar
  67. 67.
    Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg S (1999) Microbiology 145(Pt 2):283–291CrossRefGoogle Scholar
  68. 68.
    Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Microbiology 148:1119–1127Google Scholar
  69. 69.
    Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Mol Plant Microbe Interact 16:827–834CrossRefGoogle Scholar
  70. 70.
    Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Plant Physiol 134:137–146CrossRefGoogle Scholar
  71. 71.
    Teplitski M, Robinson JB, Bauer WD (2000) Mol Plant Microbe Interact 13:637–648CrossRefGoogle Scholar
  72. 72.
    Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Appl Environ Microbiol 68:1754–1759CrossRefGoogle Scholar
  73. 73.
    Dong YH, Xu JL, Li XZ, Zhang LH (2000) Proc Natl Acad Sci USA 97:3526–3531CrossRefGoogle Scholar
  74. 74.
    Kang BR, Lee JH, Ko SJ, Lee YH, Cha JS, Cho BH, Kim YC (2004) Can J Microbiol 50:935–941CrossRefGoogle Scholar
  75. 75.
    Leadbetter JR, Greenberg EP (2000) J Bacteriol 182:6921–6926CrossRefGoogle Scholar
  76. 76.
    Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK (2002) Appl Environ Microbiol 68:3919–3924CrossRefGoogle Scholar
  77. 77.
    Uroz S, Chhabra SR, Camara M, Williams P, Oger P, Dessaux Y (2005) Microbiology 151:3313–3322CrossRefGoogle Scholar
  78. 78.
    Uroz S, D’Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Microbiology 149:1981–1989CrossRefGoogle Scholar
  79. 79.
    Zhang LH, Dong YH (2004) Mol Microbiol 53:1563–1571CrossRefGoogle Scholar
  80. 80.
    Flagan S, Ching WK, Leadbetter JR (2003) Appl Environ Microbiol 69:909–916CrossRefGoogle Scholar
  81. 81.
    Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP (2004) Proc Natl Acad Sci USA 101:3587–3590CrossRefGoogle Scholar
  82. 82.
    Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Lusis AJ, Greenberg EP, Zabner J (2005) FEMS Microbiol Lett 253:29–37CrossRefGoogle Scholar
  83. 83.
    Rasmussen TB, Givskov M (2006) Microbiology 152:895–904CrossRefGoogle Scholar
  84. 84.
    Rasmussen TB, Givskov M (2006) Int J Med Microbiol 296:149–161CrossRefGoogle Scholar
  85. 85.
    Shiner EK, Rumbaugh KP, Williams SC (2005) FEMS Microbiol Rev 29:935–947CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of GeorgiaAthensUSA

Personalised recommendations