Analytical and Bioanalytical Chemistry

, Volume 386, Issue 5, pp 1571–1575 | Cite as

Synchronous fluorescence spectroscopy for quantitative determination of virgin olive oil adulteration with sunflower oil

  • Konstantina I. Poulli
  • George A. Mousdis
  • Constantinos A. GeorgiouEmail author
Technical Note


Adulteration of extra virgin olive oil with sunflower oil is a major issue for the olive oil industry. In this paper, the potential of total synchronous fluorescence (TSyF) spectra to differentiate virgin olive oil from sunflower oil and synchronous fluorescence (SyF) spectra combined with multivariate analysis to assess the adulteration of virgin olive oil are demonstrated. TSyF spectra were acquired by varying the excitation wavelength in the region 270–720 nm and the wavelength interval (Δλ) in the region from 20 to 120 nm. TSyF contour plots for sunflower, in contrast to virgin olive oil, show a fluorescence region in the excitation wavelength range 325–385 nm. Fifteen different virgin olive oil samples were adulterated with sunflower oil at varying levels (0.5–95%) resulting in one hundred and thirty six mixtures. The partial least-squares regression model was used for quantification of the adulteration using wavelength intervals of 20 and 80 nm. This technique is useful for detection of sunflower oil in virgin olive oil at levels down to 3.4% (w/v) in just two and a half minutes using an 80-nm wavelength interval.


Virgin olive oil Total synchronous fluorescence spectroscopy Adulteration Partial least-squares (PLS) Food quality control 



This work was financially supported by the Greek General Secretariat for Research and Technology through a PENED 2003 grant and Minerva S.A., Greece.


  1. 1.
    Stark AH, Madar Z (2002) Nutr Rev 60:170–176CrossRefGoogle Scholar
  2. 2.
    International Olive Oil Council COI/T.15/NC no.3, Madrid, Spain, 2003Google Scholar
  3. 3.
    Allen JC, Hamilton RJ (1983) Rancidity in foods. Blackie Academic, New YorkGoogle Scholar
  4. 4.
    Andrikopoulos NK, Giannakis IG, Tzamtzis V (2001) J Chromatogr Sci 39:137–145Google Scholar
  5. 5.
    Aparicio R, Aparicio-Ruíz R (2000) J Chromatogr A 881:93–104CrossRefGoogle Scholar
  6. 6.
    Tsimidou M, Macrae R (1987) Food Chem 25:251–258CrossRefGoogle Scholar
  7. 7.
    Fragaki G, Spyros A, Siragakis G, Salivaras E, Dais P (2005) J Agr Food Chem 53:2810–2816Google Scholar
  8. 8.
    Mavromoustakos T, Zervou M, Bonas G, Kolocouris A, Petrakis P (2000) J Am Oil Chem Soc 77:405–411CrossRefGoogle Scholar
  9. 9.
    Christy AA, Kasemsumran S, Du Y, Ozaki Y (2004) Anal Sci 20:935–940CrossRefGoogle Scholar
  10. 10.
    Yang H, Irudayaraj J (2001) J Am Oil Chem Soc 78:889–895CrossRefGoogle Scholar
  11. 11.
    López-Díez EC, Bianchi G, Goodacre R (2003) J Agr Food Chem 51:6145–6150CrossRefGoogle Scholar
  12. 12.
    Ozen BF, Mauer LJ (2002) J. Agr. Food Chem., 50:3898–3901CrossRefGoogle Scholar
  13. 13.
    Skoulika SG, Georgiou CA (2003) Appl Spectrosc 57:407–412CrossRefGoogle Scholar
  14. 14.
    Özgül-Yücel S, Proctor A (2004) J Am Oil Chem Soc 81:221–224CrossRefGoogle Scholar
  15. 15.
    Wolfbeis OS, Leiner M (1984) Mikrochim Acta 1:221–233CrossRefGoogle Scholar
  16. 16.
    Sikorska E, Romaniuk A, Khmelinskii IV, Herance R, Bourdelande JL, Sikorski M, Koziol J (2004) J Fluoresc 14:25–35CrossRefGoogle Scholar
  17. 17.
    Sayago A, Morales MT, Aparicio R (2004) Eur Food Res Technol 218:480–483CrossRefGoogle Scholar
  18. 18.
    Guimet F, Ferré J, Boqué R, Rius FX (2004) Anal Chim Acta 515:75–85CrossRefGoogle Scholar
  19. 19.
    Vo-Dinh T (1978) Anal Chem 50:396–401CrossRefGoogle Scholar
  20. 20.
    Patra D, Mishra AK (2002) Trends Anal Chem 21:787–798CrossRefGoogle Scholar
  21. 21.
    Sikorska E, Gorecki T, Khmelinskii IV, Sikorski M, Koziol J (2005) Food Chem 89:217–225CrossRefGoogle Scholar
  22. 22.
    Poulli KI, Mousdis GA, Georgiou CA (2005) Anal Chim Acta 542:151–156CrossRefGoogle Scholar
  23. 23.
    Ryder AG (2004) J Fluoresc 14:99–104CrossRefGoogle Scholar
  24. 24.
    Patra D, Mishra AK (2002) Anal Bioanal Chem 373:304–309CrossRefGoogle Scholar
  25. 25.
    Lakowicz JR (1999) Instrumentation for fluorescence spectroscopy. In: Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  26. 26.
    Brereton RG (2000) Analyst 125:2125–2154CrossRefGoogle Scholar
  27. 27.
    Kyriakidis NB, Skarkalis P (2000) J AOAC Int 83:1435–1439Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Konstantina I. Poulli
    • 1
  • George A. Mousdis
    • 2
  • Constantinos A. Georgiou
    • 1
    Email author
  1. 1.Chemistry LaboratoryAgricultural University of AthensAthensGreece
  2. 2.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece

Personalised recommendations