Analytical and Bioanalytical Chemistry

, Volume 387, Issue 3, pp 737–747 | Cite as

Scanning electron microscopy and energy dispersive analysis: applications in the field of cultural heritage

  • Manfred SchreinerEmail author
  • Michael Melcher
  • Katharina Uhlir


Scanning electron microscopy has been extensively used for the material characterization of objects of artistic and archaeological importance, especially in combination with energy dispersive X-ray microanalysis (SEM/EDX). The advantages and limitations of SEM/EDX are presented in a few case studies: analysis of pigments in cross-sections of paint layers, quantitative analysis of archaeological glass from the Roman period excavated in Ephesos/Turkey, and investigations on glasses with medieval composition concerning their weathering stability and degradation phenomena.


Scanning electron microscopy (SEM) Energy dispersive analysis (EDX) Art analysis Pigment Glass Authentication Degradation Weathering 



The authors want to express their sincere thanks to the following people for their co-operation, intense discussions of the objectives and the results obtained by analysis: Dr. B. Czurda, Österreichisches Archäologisches Institut (Austrian Archaeological Institute), Vienna/Austria, Dr. R. Linke, Bundesdenkmalamt (Federal Office for the Preservation of Austrian Cultural Heritage), Vienna/Austria and Dr. K. Kreislova, SVUOM Ltd., Prague/Czech Republic.

Prof. Dr. G. Friedbacher, Institute for Chemical Technologies and Analytics, Vienna University of Technology and Prof. Dr. J. Wernisch, Institute of Solid State Physics, Vienna University of Technology, Vienna/Austria, are greatfully acknowledged for enabling the SEM/EDX measurements at the Jeol 6400 combined with Philips EDAX Phoenix and Philips ESEM XL30, respectively.


  1. 1.
    Materials Research Society Symposia on Materials Issues in Art and Archaeology, MRS Pittsburgh (2005) Vol 852, (2002) Vol 712, (1997) Vol 462, (1995) Vol 352 (1992) Vol 267, (1990) Vol 185, (1988) Vol 123Google Scholar
  2. 2.
    Andersen HH, Demortier G (2004) (eds) Radiation and archaeometry, NIM-B 226:1Google Scholar
  3. 3.
    Lindgren ES (2000) (guest ed) Special millenium issue on cultural heritage, X-Ray Spectrom 29:25Google Scholar
  4. 4.
    Janssens K, Van Grieken R (2004) (eds) Non-destructive microanalysis of cultural heritage materials XLII. Wilson and Wilson, Amsterdam Google Scholar
  5. 5.
    Triennual Meetings of ICOM-CC e.g. (1990) Dresden/Germany, (1993) Washington/DC, (1996) Edinbourgh/Great Britain, (1999) Lyon/France, (2002) Rio de Janeiro/Brasil, (2005) The Hague/Netherlands, (2008) New DehliGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
    Adriaens A, Degriny Ch, Cassar JA (2005) Benefits of non-destructive analytical techniques for conservation. COST Action G8, COST Office, BrusselsGoogle Scholar
  9. 9.
  10. 10.
    SR2A 2005 (Synchrotron Radiation in Art and Archaeology) 9–11 February 2005 ESRF-CNRS, Grenoble/France
  11. 11.
    RICH 5 (Research Infrastructure of Cultutal Heritage) 12–13 December 2005, The Abdus Salam International Centre for Theoretical Physics, Trieste/ItalyGoogle Scholar
  12. 12.
    Schreiner M, Grasserbauer M (1985) Fresenius J Anal Chem 322:181CrossRefGoogle Scholar
  13. 13.
    Knoll M, Ruska E (1932) Z Physik 78:318CrossRefADSGoogle Scholar
  14. 14.
    Reimer L (1985) Scanning electron microscopy. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. 15.
    Reed SJB (1993) Electron microprobe analysis. University Press, CambridgeGoogle Scholar
  16. 16.
    Castaing R (1951) Application des sondes electronique a une methode d’ analyse ponctuelle chimique et cristallographique. University Paris, ThesisGoogle Scholar
  17. 17.
    Eggert F (2005) Standardfreie Elektronenstrahlmikroanalyse mit dem EDX im Rasterelektronenmikroskop. Books on Demand GmbH, NorderstedtGoogle Scholar
  18. 18.
    Hornblower AP (1962) Archaeometry 5:108Google Scholar
  19. 19.
    Hornblower AP (1963) Archaeometry 6:37Google Scholar
  20. 20.
    Ogilvie RE (1965) Application of science in examination of works of art. Museum of Fine Arts, Boston 223–229Google Scholar
  21. 21.
    Ogilvie RE (1970) Application of science in examination of works of art. Museum of Fine Arts, Boston 84–87Google Scholar
  22. 22.
    Kuisma-Kursula P, Räisänen J (1999) Archeometry 41:71Google Scholar
  23. 23.
    Schalm O, Caluwé D, Wouters H, Janssens K, Verhaeghe F, Pieters M (2004) Spectrochim Acta B 59:1647CrossRefGoogle Scholar
  24. 24.
    Kautek W, Pentzien S, Conradi A, Leichtfried D, Puchinger L (2003) J Cult Heritage 4:179sCrossRefGoogle Scholar
  25. 25.
    Facchini A, Malara C, Bazzani G, Cavallotti P L (2000) J Colloid Interface Sci 231:213CrossRefGoogle Scholar
  26. 26.
    Banik G, Schreiner M, Mairinger F, Stachelberger H (1982) Prakt Metallogr 19:104Google Scholar
  27. 27.
    Mantler M, Schreiner M (2000) X-Ray Spectrom 29:3CrossRefGoogle Scholar
  28. 28.
    Loon A, Boon J (2004) Spectrochim Acta B 59:1601CrossRefGoogle Scholar
  29. 29.
    Hochleitner B, Schreiner M, Drakopoulos M, Snigireva I, Snigirev A (2005) Cultural heritage conservation and environmental impact assessment by non-destructive testing and micro-analysis. AA Balkema, Leiden 171Google Scholar
  30. 30.
    Uhlir K, Melcher M, Schreiner M (2006) In: Czurda-Ruth B (ed) Hanghaus 1 in Ephesos - Die Gläser. Forschungen in Ephesos Bd. VIII, Wien (submitted)Google Scholar
  31. 31.
    Linke R, Schreiner M, Demortier G, Alram M, Winter H (2004) In: Janssens K, Van Grieken R (2004) (eds) Non-destructive microanalysis of cultural heritage materials XLII. Wilson and Wilson, Amsterdam, p 605Google Scholar
  32. 32.
    Linke R, Schreiner M, Demortier G (2004) NIM-B 226:172CrossRefADSGoogle Scholar
  33. 33.
    Uhlir K (2004) Naturwissenschaftliche Untersuchungen an antiken Gläsern aus Ephesos mittels μ-RFA und REM/EDS. PhD, Vienna University of Technology 2004
  34. 34.
    Linke R, Schreiner M, Demortier G, Alram M (2003) X-Ray Spetrom 32:373CrossRefGoogle Scholar
  35. 35.
    Janssens K et al (2000) X-Ray Spectrom 29:73CrossRefGoogle Scholar
  36. 36.
    Schreiner M, Linke R, Jembrih D (2000) In: Goupy J, Mohen JP (eds) Art et chimie: la couleur, CNRS Editions, Paris pp 169–174Google Scholar
  37. 37.
    Van der Linden V, Bultinck E, De Ruytter J, Schalm O, Janssens K, Devos W, Tiri W (2005) NIM-B 239:100CrossRefADSGoogle Scholar
  38. 38.
    Freestone IC (2003) Annales du 15 h cougies de l’ AIHV New York 257Google Scholar
  39. 39.
    Freestone IC, Gorin-Rosen Y (2000) La Route du Verre, TMO 33, Maison de l’Orient, Lyon 65Google Scholar
  40. 40.
    Gratuze B, Barrandon J-N (1990) Archaeometry 32:155Google Scholar
  41. 41.
    Freestone IC, Greenwood R, Gorin-Rosen Y (2002) 1st International Conference Hyalos-Vitrum-Glass, Glasnet Publication, Athens 167Google Scholar
  42. 42.
    Freestone IC, Wolf S, Thirlwall M (2003) Annales de 16e Congrès de l’Association Internationale pour l’Histoire du Verre, London 153Google Scholar
  43. 43.
    Foy D, Vichy M, Picon M (2000) Annales 14th congrès de l’Association pour l’Histoire de Verre, AIHV, Amsterdam 51–57Google Scholar
  44. 44.
    Foy D, Nenna MD (2003) Actes du colloque de l’AFAV, Aix-en-Provence et Marseille 1:227Google Scholar
  45. 45.
    Morey GW (1925) Id Eng Chem 17(4):389CrossRefGoogle Scholar
  46. 46.
    Douglas RW, Isard JO (1949) J Soc Glass Techn 33:290Google Scholar
  47. 47.
    Doremus RH (1994) Glass science, 2nd edn. Wiley, New YorkGoogle Scholar
  48. 48.
    Shelby JE (1997) Introduction to glass science and technology. RSC Paperbacks, CambridgeGoogle Scholar
  49. 49.
    Melcher M, Schreiner M (2004) Anal Bioanal Chem 379:628PubMedCrossRefGoogle Scholar
  50. 50.
    Melcher M, Schreiner M (2005) J Non-Cryst Solids 351:1210CrossRefGoogle Scholar
  51. 51.
    Melcher M, Schreiner M (2006) J Non-Cryst Solids 352:368CrossRefGoogle Scholar
  52. 52.
    Bezborodov MA (1975) Chemie und Technologie der antiken und mittelalterlichen Gläser. Verlag Philipp von Zabern, MainzGoogle Scholar
  53. 53.
    El-Shamy TM (1973) Phys Chem Glasses 14:1Google Scholar
  54. 54.
    Frenzel G (1985) Sci Am 252:100CrossRefGoogle Scholar
  55. 55.
    Newton RG (1985) Glass Techn 26:21Google Scholar
  56. 56.
    Schreiner M (1988) Glastechn Ber 61:197Google Scholar
  57. 57.
    Römich H (2000) Rivista della Staz. Sper Del Vetro 30(6):9Google Scholar
  58. 58.
    Munier I, Lefèvre R, Losno R (2002) Glass Techn 43C:114Google Scholar
  59. 59.
  60. 60.
    Melcher M, Schreiner M, Kreislova K (2006) Glass Technol (in press)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Manfred Schreiner
    • 1
    Email author
  • Michael Melcher
    • 1
  • Katharina Uhlir
    • 1
  1. 1.Institute of Science and Technology in ArtAcademy of Fine ArtsViennaAustria

Personalised recommendations