Analytical and Bioanalytical Chemistry

, Volume 386, Issue 5, pp 1413–1418 | Cite as

Electrocatalytic reduction of hydrogen peroxide on modified graphite electrodes: application to the development of glucose biosensors

  • T. Dodevska
  • E. HorozovaEmail author
  • N. DimchevaEmail author
Original Paper


The electrocatalytic activities of a series of compact graphites modified with microquantities of platinum metals (Pd or Pt+Pd) towards the electrochemical reduction of hydrogen peroxide were characterised. Operational parameters such as the optimal working potential, the influence of temperature and the resulting electrode characteristics were examined. The benefits of using graphite modified with Pt+Pd (mixture ratio 30%:70%) as the basic transducer in a glucose biosensor with improved sensitivity were demonstrated. It was proven that, under the working conditions chosen, the selected electrode (whether bare or covered with an enzyme layer) did not respond to any glutathione, uric acid or ascorbic acid (which all normally occur in biological fluids) present.


Modified graphite electrodes Hydrogen peroxide Electroreduction Glucose biosensor 



Financial support from the Plovdiv University Research Fund is gratefully appreciated.


  1. 1.
    Aebi H (1984) Meth Enzymol 105:121–126CrossRefGoogle Scholar
  2. 2.
    Baldwin RP (1999) J Pharm Biomed Anal 19:69–81CrossRefGoogle Scholar
  3. 3.
    Liu J, Wang J (2001) Food Technol Biotechnol 39:55–58Google Scholar
  4. 4.
    Ruzgas T, Gorton L, Emneus, J, Marco-Varga G (1995) J Electroanal Chem 391:41–49CrossRefGoogle Scholar
  5. 5.
    Rajendran V, Csoregi E, Okamoto Y, Gorton L (1998) Anal Chim Acta 373:241–251CrossRefGoogle Scholar
  6. 6.
    Ferapontova E, Grigorenko V, Egorov A, Börchers T, Ruzgas T, Gorton L (2001) Biosens Bioelectron 16:147–157CrossRefGoogle Scholar
  7. 7.
    Lindgren A, Ruzgas T, Gorton L (2001) Curr Top Anal Chem 2:71–94Google Scholar
  8. 8.
    Nissum M, Schødt C, Welinder K (2001) Biochim Biophys Acta 1545:339–348Google Scholar
  9. 9.
    Lötzbeyer T, Schuhmann W, Schmidt H-L (1997) Bioelectrochem Bioenerg 42:1–6CrossRefGoogle Scholar
  10. 10.
    Yang W, Li Y, Bai Y, Sun Ch (2006) Sensor Actuat 115:42–48Google Scholar
  11. 11.
    Zhang Z, Chouchane S, Magliozzo R, Rusling J (2002) Anal Chem 74:163–170CrossRefGoogle Scholar
  12. 12.
    Yu A, Caruso F (2003) Anal Chem 75:3031–3037CrossRefGoogle Scholar
  13. 13.
    Karyakin A, Karyakina E, Gorton L (2000) Anal Chem 72:1720–1723CrossRefGoogle Scholar
  14. 14.
    Ivama VM, Serrano SHP (2003) J U Braz Chem Soc 14:551–555Google Scholar
  15. 15.
    De Luca S, Florescu M, Ghica ME, Lupu A, Palleschi G, Brett CMA, Compagnone D (2005) Talanta 68:171–178CrossRefGoogle Scholar
  16. 16.
    Puganova EA, Karyakin AA (2005) Sensor Actuat B 109:167–170CrossRefGoogle Scholar
  17. 17.
    Haghighi B, Varma S, Alizadeh Sh FM, Yigzaw Y, Gorton L (2004) Talanta 64:3–12CrossRefGoogle Scholar
  18. 18.
    Varma S, Yigzaw Y, Gorton L (2006) Anal Chim Acta 556:319–325CrossRefGoogle Scholar
  19. 19.
    Toyoda Yu, Katoh N, Kuwabara K (2004) Mater Sci Eng B 108:271–277CrossRefGoogle Scholar
  20. 20.
    Malinauskas A, Araminaite R, Mickeviciute G, Garjonyte (2004) Mater Sci Eng C 24:513–519CrossRefGoogle Scholar
  21. 21.
    Chi Q, Dong Sh (1995) Anal Chim Acta 310:429–436CrossRefGoogle Scholar
  22. 22.
    Hu Y-L, Yuan J-H, Chem W, Wang K, Xia X-H (2005) Electrochem Com 7:1252–1256CrossRefGoogle Scholar
  23. 23.
    Horozova E, Jordanova Z, Angelacheva A (1997) Bull Electrochem 13:321–326Google Scholar
  24. 24.
    Dimcheva N, Horozova E, Jordanova Z (2002) Z Naturforsch C 57:705–711Google Scholar
  25. 25.
    Penkina MM (ed) (1987) Immobilized enzymes. Vishaya schola, Moscow (in Russian)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Inorganic and Physical ChemistryUniversity of Food TechnologyPlovdivBulgaria
  2. 2.Department of Physical ChemistryPlovdiv UniversityPlovdivBulgaria

Personalised recommendations