Advertisement

Analytical and Bioanalytical Chemistry

, Volume 386, Issue 5, pp 1273–1283 | Cite as

Optical biochemical sensor for determining hydroperoxides in nonpolar organic liquids as archetype for sensors consisting of amphiphilic conetworks as immobilisation matrices

  • Michael Hanko
  • Nico Bruns
  • Joerg C. Tiller
  • Jürgen Heinze
Original Paper

Abstract

This paper reports the successful design of a prototype of an optical biochemical sensor for the determination of hydroperoxides in nonpolar organic liquids. The sensor consists of a matrix of an amphiphilic polymer conetwork (APCN), a novel class of very promising polymeric materials for easy preparation of biochemical sensor matrices. APCNs are characterised by nanoscopic phase separation between the hydrophilic and the hydrophobic phases. For medium ratios of conetwork composition, the domains of both phases are interconnected both on the surface of the conetworks and throughout the bulk. The APCNs have peculiar swelling properties—the hydrophilic phase swells in hydrophilic media and the hydrophobic phase swells in hydrophobic media. In both types of media dissolved reagents can diffuse from the solution into the swollen phase of the polymeric conetwork. This enables loading of the hydrophilic phase of the APCNs with enzymes and indicator reagents by simple impregnation. Hydrophobic analytes can diffuse into the polymeric conetwork via its hydrophobic phase and react with indicator reagents immobilised in the hydrophilic phase at the huge internal interface between the two opposite phases.

To prepare the described hydroperoxide-sensitive biosensors, we used APCN films consisting of 58% (w/w) poly(2-hydroxyethyl acrylate) (PHEA) as hydrophilic chains and 42% (w/w) polydimethylsiloxane (PDMS) as hydrophobic linkers. Horseradish peroxidase (HRP) and diammonium 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as indicator reagent were co-immobilised in this optically clear and transparent matrix. In this feasibility study the conditions investigated were principally those relevant to characterisation of the innovative matrix material and the disposable biosensor produced from it; the biosensor was not optimised. Sensitivity toward tert-butylhydroperoxide (tBuOOH) dissolved in n-heptane was acceptable, between approximately 1 and at least 50 mmol L−1, even in the dry state. The response time was 1.7 to 5.0 min. No leaching of immobilised reagents was observed during a period of at least one hour. Pre-swelling the sensors with water increased the reaction rate and the total turnover number of the enzyme. In a dry atmosphere at 4 °C the sensors were found to be stable for at least two weeks.

Keywords

Nanophase-separated amphiphilic conetwork Enzyme immobilisation Optical biosensor Nonpolar organic media Horseradish peroxidase Peroxide determination 

Notes

Acknowledgements

This work was supported by the European Union (MASTER project), by the Deutsche Forschungsgemeinschaft (SFB 428 and Emmy-Noether-Programm), and by the Fonds der Chemischen Industrie.

References

  1. 1.
    Stöcklein WFM, Scheller FW (1997) In: Scheller FW, Fedrowitz J, Schubert F (eds) Frontiers in biosensorics I. Fundamental aspects. Birkhäuser, Basel, pp 83–96Google Scholar
  2. 2.
    Carrea G, Riva S (2000) Angew Chem 112:2312–2341CrossRefGoogle Scholar
  3. 3.
    Klibanov AM (2001) Nature 409:241–246CrossRefGoogle Scholar
  4. 4.
    Hayes DG (2002) In: Howard GC, Brown WE (eds) Modern protein chemistry: practical aspects. CRC Press, Boca Raton, Fl, pp 179–225Google Scholar
  5. 5.
    Castro GR, Knubovets T (2003) Crit Rev Biotechnol 23:195–231Google Scholar
  6. 6.
    Hudson EP, Eppler RK, Clark DS (2005) Curr Opin Biotechnol 16:637–643CrossRefGoogle Scholar
  7. 7.
    Yang L, Murray RW (1994) Anal Chem 66:2710–2718CrossRefGoogle Scholar
  8. 8.
    Matsushima A, Kodera Y, Hiroto M, Nishimura H, Inada Y (1996) J Mol Catal B 2:1–17CrossRefGoogle Scholar
  9. 9.
    Kamiya N, Inoue M, Goto M, Nakamura N, Naruta Y (2000) Biotechnol Progr 16:52–58CrossRefGoogle Scholar
  10. 10.
    Bindhu LV, Emilia AT (2003) Biochem Eng J 15:47–57CrossRefGoogle Scholar
  11. 11.
    Chen J, Xia C, Niu J, Li S (2001) Biochem Biophys Res Commun 282:1220–1223CrossRefGoogle Scholar
  12. 12.
    Avila GP, Salvador A, de la Guardia M (1997) Analyst 122:1543–1547CrossRefGoogle Scholar
  13. 13.
    Bickerstaff GF (ed) (1997) Immobilization of enzymes and cells. Humana Press, Totowa, NJGoogle Scholar
  14. 14.
    Tiller J, Berlin P, Klemm D (1999) Biotechnol Appl Biochem 30:155–162Google Scholar
  15. 15.
    Kuswandi B, Andres R, Narayanaswamy R (2001) Analyst 126:1469–1491CrossRefGoogle Scholar
  16. 16.
    Konry T, Novoa A, Cosnier S, Marks RS (2003) Anal Chem 75:2633–2639CrossRefGoogle Scholar
  17. 17.
    Adányi N, Váradi M (2003) Eur Food Res Technol 218:99–104CrossRefGoogle Scholar
  18. 18.
    Dong S, Guo Y (1994) Anal Chem 66:3895–3899CrossRefGoogle Scholar
  19. 19.
    Iwuoha EI, Smyth MR, Lyons MEG (1997) Biosens Bioelectron 12:53–75CrossRefGoogle Scholar
  20. 20.
    Lee KY, Mooney DJ (2001) Chem Rev 101:1869–1879CrossRefGoogle Scholar
  21. 21.
    Wu XJ, Choi MMF (2003) Anal Chem 75:4019–4027CrossRefGoogle Scholar
  22. 22.
    Choi MMF (2004) Microchim Acta 148:107–132CrossRefGoogle Scholar
  23. 23.
    Wolfbeis OS (2004) Anal Chem 76:3269–3284CrossRefGoogle Scholar
  24. 24.
    Brink LES, Tramper J (1985) Biotechnol Bioeng 27:1258–1269CrossRefGoogle Scholar
  25. 25.
    Kawakami K, Furukawa S (1997) Appl Biochem Biotechnol 67:23–31CrossRefGoogle Scholar
  26. 26.
    Verones FM, Mammucari C, Schiavon F, Schiavon O, Lora S, Secundo F, Chilin A, Guiotto A (2001) Farmaco 56:541–547CrossRefGoogle Scholar
  27. 27.
    Jin W, Brennan JD (2002) Anal Chim Acta 461:1–36CrossRefGoogle Scholar
  28. 28.
    Wu XJ, Choi MMF (2004) Anal Chem 76:4279–4285CrossRefGoogle Scholar
  29. 29.
    Wu XJ, Choi MMF, Wu XM (2004) Analyst 129:1143–1149CrossRefGoogle Scholar
  30. 30.
    Erdodi G, Kennedy JP (2006) Prog Polym Sci 31:1–18CrossRefGoogle Scholar
  31. 31.
    Patrickios CS, Georgiou TK (2003) Curr Opin Colloid Interface Sci 8:76–85CrossRefGoogle Scholar
  32. 32.
    Friends GD, Künzler JF, Ozark RM (1995) Macromol Symp 98:619–631Google Scholar
  33. 33.
    Du Prez FE, Goethals EJ, Schue R, Qariouh H, Schue F (1998) Polym Int 46:117–125CrossRefGoogle Scholar
  34. 34.
    Tiller JC, Sprich C, Hartmann L (2005) J Control Release 103:355–367CrossRefGoogle Scholar
  35. 35.
    Keszler B, Kennedy JP, Mackey PW (1993) J Control Release 25:115–121CrossRefGoogle Scholar
  36. 36.
    Kralik M, Zecca M, Bianchin P, D’Archivio AA, Galantini L, Corain B (1998) J Mol Catal A 130:85–93CrossRefGoogle Scholar
  37. 37.
    Bruns N, Tiller JC (2005) Nano Lett 5:45–48CrossRefGoogle Scholar
  38. 38.
    Savin G, Bruns N, Thomann Y, Tiller JC (2005) Macromolecules 38:7536–7539CrossRefGoogle Scholar
  39. 39.
    Bruns N, Tiller JC (2005) Ger Offen, DE 2003-10343794, 8 ppGoogle Scholar
  40. 40.
    Schulte-Ladbeck R, Kolla P, Karst U (2002) Analyst 127:1152–1154CrossRefGoogle Scholar
  41. 41.
    Smith K, Silvernail NJ, Rodgers KR, Elgren TE, Castro M, Parker RM (2002) J Am Chem Soc 124:4247–4252CrossRefGoogle Scholar
  42. 42.
    Bruns N, Scherble J, Hartmann L, Thomann R, Iván B, Mülhaupt R, Tiller JC (2005) Macromolecules 38:2431–2438CrossRefGoogle Scholar
  43. 43.
    Scherble J, Iván B, Mülhaupt R (2002) Macromol Chem Phys 203:1866–1871CrossRefGoogle Scholar
  44. 44.
    Solís-Oba M, Ugalde-Saldívar VM, González I, Viniegra-González G (2005) J Electroanal Chem 579:59–66CrossRefGoogle Scholar
  45. 45.
    van Deurzen MPJ, van Rantwijk F, Sheldon RA (1997) Tetrahedron 53:13183–13220CrossRefGoogle Scholar
  46. 46.
    Ralfs M, Heinze J (1997) Sens Actuators B 44:257–261CrossRefGoogle Scholar
  47. 47.
    Bourbonnais R, Leech D, Paice M (1998) Biochim Biophys Acta 1379:381–390Google Scholar
  48. 48.
    Chut SL, Li J, Tan SN (1997) Analyst 122:1431–1434CrossRefGoogle Scholar
  49. 49.
    Qian L, Yang X (2006) Talanta 68:721–727CrossRefGoogle Scholar
  50. 50.
    Su X, O’Shea SJ (2001) Anal Biochem 299:241–246CrossRefGoogle Scholar
  51. 51.
    Navas Díaz A, Ramos Peinado MC, Torijas Minguez MC (1998) Anal Chim Acta 363:221–227CrossRefGoogle Scholar
  52. 52.
    Åsberg P, Inganäs O (2003) Biosens Bioelectron 19:199–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michael Hanko
    • 1
  • Nico Bruns
    • 2
  • Joerg C. Tiller
    • 2
  • Jürgen Heinze
    • 1
  1. 1.Freiburg Materials Research Centre (FMF), Institute of Physical ChemistryAlbert-Ludwigs-University FreiburgFreiburgGermany
  2. 2.Freiburg Materials Research Centre (FMF), Institute of Macromolecular ChemistryAlbert-Ludwigs-University FreiburgFreiburgGermany

Personalised recommendations