Analytical and Bioanalytical Chemistry

, Volume 386, Issue 2, pp 228–234 | Cite as

Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA

  • Fengli Qu
  • Minghui Yang
  • Yashuang Lu
  • Guoli Shen
  • Ruqin Yu
Original Paper


A simple approach is proposed for the synthesis of cobalt hexacyanoferrate nanoparticles (CoNPs) with uniform shape and size controlled by ethylene diamine tetraacetic acid (EDTA) as a stabilizer. A sensitive amperometric biosensor for insulin has been prepared using glassy carbon electrodes by solubilization of carbon nanotubes (CNTs) in chitosan (CHIT) together with CoNPs synthesized by the new methodology. The CoNP-CNT-CHIT organic–inorganic system exerts a synergistic effect, resulting in the remarkably enhanced insulin currents owing to the superior electron-transfer ability of CNTs and the excellent reversible redox centers of CoNPs. High-resolution transmission electron microscopy (HRTEM) was used to provide closer inspection of the CoNPs. The effects of alkali metal cations and the concentrations of CNTs and CoNPs on the voltammetric behavior of the film-modified electrode were also investigated. In pH 6.98 phosphate buffer (PB) at +0.7 V (vs. SCE) the insulin biosensor exhibits a linear response range of 0.1–3 μM with a correlation coefficient of 0.98, and the detection limit (S/N=3) is determined to be 40 nM, the stability of the biosensor was tested and found satisfactory. There is great promise for in vivo measurements of this important hormone.


Cobalt hexacyanoferrate Carbon nanotubes Insulin Chitosan 



This work was supported by the NNSF of China (No. 20435010, 20375012 and 20205005).


  1. 1.
    Lin YH, Lu F, Tu Y, Ren ZF (2004) Nano Lett 4:191CrossRefGoogle Scholar
  2. 2.
    Valentini F, Orlanducci S, Terranova ML, Amine A, Palleschi G (2004) Sens Actuat B 100:117CrossRefGoogle Scholar
  3. 3.
    Zhao YD, Zhang WD, Chen H, Luo QM, Li SFY (2002) Sens Actuat B 87:168CrossRefGoogle Scholar
  4. 4.
    Gong KP, Zhang MN, Yan YM, Su L, Mao LQ, Xiong SX, Chen Y (2004) Anal Chem 76:6500CrossRefGoogle Scholar
  5. 5.
    Wang J, Musameh M (2003) Anal Chem 75:2075CrossRefGoogle Scholar
  6. 6.
    Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Anal Chem 74:1993CrossRefGoogle Scholar
  7. 7.
    Zhang MG, Smith A, Gorski W (2004) Anal Chem 76:5045CrossRefGoogle Scholar
  8. 8.
    Wang J, Musameh M, Lin YH (2003) J Am Chem Soc 125:2408CrossRefGoogle Scholar
  9. 9.
    Hrapovic S, Liu YL, Male KB, Luong JHT (2004) Anal Chem 76:1083CrossRefGoogle Scholar
  10. 10.
    Wang J, Dai JH, Yarlagadda T (2005) Langmuir 21:9CrossRefGoogle Scholar
  11. 11.
    Zhang MG, Gorski W (2005) J Am Chem Soc 127:2058CrossRefGoogle Scholar
  12. 12.
    Quinn BM, Dekker C, Lemay SG (2005) J Am Chem Soc 127:6146CrossRefGoogle Scholar
  13. 13.
    Yamada M, Arai M, Kurihara M, Sakamoto M, Miyake M (2004) J Am Chem Soc 126:9482CrossRefGoogle Scholar
  14. 14.
    Cai CX, Xue KH, Xu SM (2000) J Electroanal Chem 486:111CrossRefGoogle Scholar
  15. 15.
    Vaucher S, Fielden J, Li M, Dujardin E, Mann S (2002) Nano Lett 2:225CrossRefGoogle Scholar
  16. 16.
    Chen SM (1998) Electrochim Acta 43:3359CrossRefGoogle Scholar
  17. 17.
    Chen SM, Lu MF, Lin KC (2005) J Electroanal Chem 579:163CrossRefGoogle Scholar
  18. 18.
    Pikulski M, Gorski W (2000) Anal Chem 72:2696CrossRefGoogle Scholar
  19. 19.
    Tong W, Yeung ES (1996) J Chromatogr B 685:35CrossRefGoogle Scholar
  20. 20.
    Luo Y, Huang KX, Xu HB (2005) Anal Chim Acta 553:64CrossRefGoogle Scholar
  21. 21.
    Cheng L, Pacey GE, Cox JA (2001) Anal Chem 73:5607CrossRefGoogle Scholar
  22. 22.
    Moslemi P, Najafabadi AR, Tajerzadeh H (2003) J Pharm Biomed Anal 33:45CrossRefGoogle Scholar
  23. 23.
    Zsuga J, Tory K, Jaszlits L, Bajza A, Nemeth J, Peitl B, Szilvassy Z (2004) J Biochem Biophys Methods 61:253CrossRefGoogle Scholar
  24. 24.
    Salimi A, Pourbeyram S, Haddadzadeh H (2003) J Electroanal Chem 542:39CrossRefGoogle Scholar
  25. 25.
    Wang J, Musameh M (2004) Anal Chim Acta 511:33CrossRefGoogle Scholar
  26. 26.
    Zhang MG, Mullens C, Gorski W (2005) Anal Chem 77:6396CrossRefGoogle Scholar
  27. 27.
    Chen SM, Peng KT (2003) J Electroanal Chem 547:179CrossRefGoogle Scholar
  28. 28.
    Shankaran DR, Narayanan SS (2002) Sens Actuat B 86:180CrossRefGoogle Scholar
  29. 29.
    Nielsen L, Frokjaer S, Brange J, Uversky VN, Fink AL (2001) Biochemistry 40:8397CrossRefGoogle Scholar
  30. 30.
    Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G (2003) Anal Chem 75:5413CrossRefGoogle Scholar
  31. 31.
    Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH (2001) J Phys Chem B 105:1157CrossRefGoogle Scholar
  32. 32.
    Tsai MS (2004) Mater Sci Eng B 110:132CrossRefGoogle Scholar
  33. 33.
    Ocana M, Morales MP, Serna CJ (1999) J Colloid Interface Sci 212:317CrossRefGoogle Scholar
  34. 34.
    Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) J Phys Chem B 102:1870CrossRefGoogle Scholar
  35. 35.
    Choudhurya S, Deyb GK, Yakhmic JV (2003) J Crystal Growth 258:197CrossRefGoogle Scholar
  36. 36.
    Abbaspour A, Mehrgardi MA (2004) Anal Chem 76:5690CrossRefGoogle Scholar
  37. 37.
    Tsai YC, Li SC, Chen JM (2005) Langmuir 21:3653CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Fengli Qu
    • 1
  • Minghui Yang
    • 1
  • Yashuang Lu
    • 1
  • Guoli Shen
    • 1
  • Ruqin Yu
    • 1
  1. 1.State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations