Analytical and Bioanalytical Chemistry

, Volume 386, Issue 3, pp 472–481

Investigation of structure, dynamics and function of metalloproteins with electrospray ionization mass spectrometry

  • Igor A. Kaltashov
  • Mingxuan Zhang
  • Stephen J. Eyles
  • Rinat R. Abzalimov
Review

Abstract

Electrospray ionization mass spectrometry (ESI MS) has emerged recently as a powerful tool for analyzing many structural and behavioral aspects of metalloproteins in great detail. In this review we discuss recent developments in the field, placing particular emphasis on the unique features of ESI MS that lend themselves to metalloprotein characterization at a variety of levels. Direct mass measurement enables the determination of protein–metal ion binding stoichiometry in solution and metalloprotein higher order structure in the case of multi-subunit proteins. MS techniques have been developed for determining the locations of metal-binding centers, metal oxidation states and reaction intermediates of metal-containing enzymes. Other ESI MS techniques are also discussed, such as protein ion charge state distributions and hydrogen/deuterium exchange studies, which can be used to measure metal binding affinities and to shed light on vital dynamic aspects of the functional properties of metalloproteins endowed by metal binding.

Keywords

Mass spectrometry (MS) Electrospray ionization (ESI) Collision-activated dissociation (CAD) Metalloprotein Noncovalent interactions Hydrogen/deuterium exchange (HDX) 

References

  1. 1.
    Lehnert N, George SD, Solomon EI (2001) Recent advances in bioinorganic spectroscopy. Curr Opin Chem Biol 5:176–187CrossRefGoogle Scholar
  2. 2.
    Loo JA (1997) Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16:1–23CrossRefGoogle Scholar
  3. 3.
    Yu X, Wojciechowski M, Fenselau C (1993) Assessment of metals in reconstituted metallothioneins by electrospray mass spectrometry. Anal Chem 65:1355–1359CrossRefGoogle Scholar
  4. 4.
    Hu P, Ye QZ, Loo JA (1994) Calcium stoichiometry determination for calcium binding proteins by electrospray ionization mass spectrometry. Anal Chem 66:4190–4194CrossRefGoogle Scholar
  5. 5.
    Loo JA, Hu PF, Smith RD (1994) Interaction of angiotensin peptides and zinc metal-ions probed by electrospray-ionization mass-spectrometry. J Am Soc Mass Spectrom 5:959–965CrossRefGoogle Scholar
  6. 6.
    Venters RA, Benson LM, Craig TA, Paul KH, Kordys DR, Thompson R, Naylor S, Kumar R, Cavanagh J (2003) The effects of Ca2+ binding on the conformation of calbindin D28K: A nuclear magnetic resonance and microelectrospray mass spectrometry study. Anal Biochem 317:59–66CrossRefGoogle Scholar
  7. 7.
    Zaia J, Fabris D, Wei D, Karpel RL, Fenselau C (1998) Monitoring metal ion flux in reactions of metallothionein and drug-modified metallothionein by electrospray mass spectrometry. Protein Sci 7:2398–2404Google Scholar
  8. 8.
    He F, Hendrickson CL, Marshall AG (2000) Unequivocal determination of metal atom oxidation state in naked heme proteins: Fe(III) myoglobin, Fe(III) cytochrome c, Fe(III) cytochrome b5, and Fe(III)cytochrome b5 L47R. J Am Soc Mass Spectrom 11:120–126CrossRefGoogle Scholar
  9. 9.
    Johnson KA, Verhagen MF, Brereton PS, Adams MW, Amster IJ (2000) Probing the stoichiometry and oxidation states of metal centers in iron-sulfur proteins using electrospray FTICR mass spectrometry. Anal Chem 72:1410–1418CrossRefGoogle Scholar
  10. 10.
    Johnson KA, Shira BA, Anderson JL, Amster IJ (2001) Chemical and on-line electrochemical reduction of metalloproteins with high-resolution electrospray ionization mass spectrometry detection. Anal Chem 73:803–808CrossRefGoogle Scholar
  11. 11.
    Kaltashov IA, Cotter RJ, Feinstone WH, Ketner GW, Woods AS (1997) Ferrichrome: Surprising stability of a cyclic peptide Fe-III complex revealed by mass spectrometry. J Am Soc Mass Spectrom 8:1070–1077CrossRefGoogle Scholar
  12. 12.
    Nemirovskiy OV, Gross ML (1998) Determination of calcium binding sites in gas-phase small peptides by tandem mass spectrometry. J Am Soc Mass Spectrom 9:1020–1028CrossRefGoogle Scholar
  13. 13.
    Gonzalez de Peredo A, Saint-Pierre C, Adrait A, Jacquamet L, Latour J-M, Michaud-Soret I, Forest E (1999) Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli: chemical modification and mass spectrometry analysis. Biochemistry 38:8582–8589CrossRefGoogle Scholar
  14. 14.
    Apuy JL, Busenlehner LS, Russell DH, Giedroc DP (2004) Ratiometric pulsed alkylation mass spectrometry as a probe of thiolate reactivity in different metalloderivatives of Staphylococcus aureus pI258 CadC. Biochemistry 43:3824–3834CrossRefGoogle Scholar
  15. 15.
    Lim J, Vachet RW (2003) Development of a methodology based on metal-catalyzed oxidation reactions and mass spectrometry to determine the metal binding sites in copper metalloproteins. Anal Chem 75:1164–1172CrossRefGoogle Scholar
  16. 16.
    Lei QP, Cui X, Kurtz DM Jr, Amster IJ, Chernushevich IV, Standing KG (1998) Electrospray mass spectrometry studies of non-heme iron-containing proteins. Anal Chem 70:1838–1846CrossRefGoogle Scholar
  17. 17.
    Fabris D, Fenselau C (1999) Characterization of allosteric insulin hexamers by electrospray ionization mass spectrometry. Anal Chem 71:384–387CrossRefGoogle Scholar
  18. 18.
    Lippincott J, Fattor TJ, Lemon DD, Apostol I (2000) Application of native-state electrospray mass spectrometry to identify zinc-binding sites on engineered hemoglobin. Anal Biochem 284:247–255CrossRefGoogle Scholar
  19. 19.
    Afonso C, Hathout Y, Fenselau C (2004) Evidence for zinc ion sharing in metallothionein dimers provided by collision-induced dissociation. Int J Mass Spectrom 231:207–211CrossRefGoogle Scholar
  20. 20.
    Konermann L, Douglas DJ (1997) Acid-induced unfolding of cytochrome c at different methanol concentrations: Electrospray ionization mass spectrometry specifically monitors changes in the tertiary structure. Biochemistry 36:12296–12302CrossRefGoogle Scholar
  21. 21.
    Gumerov DR, Kaltashov IA (2001) Dynamics of iron release from transferrin N-lobe studied by electrospray ionization mass spectrometry. Anal Chem 73:2565–2570CrossRefGoogle Scholar
  22. 22.
    Gumerov DR, Mason AB, Kaltashov IA (2003) Interlobe communication in human serum transferrin: metal binding and conformational dynamics investigated by electrospray ionization mass spectrometry. Biochemistry 42:5421–5428CrossRefGoogle Scholar
  23. 23.
    Lin LN, Mason AB, Woodworth RC, Brandts JF (1994) Calorimetric studies of serum transferrin and ovotransferrin. Estimates of domain interactions, and study of the kinetic complexities of ferric ion binding. Biochemistry 33:1881–1888CrossRefGoogle Scholar
  24. 24.
    van den Bremer ET, Jiskoot W, James R, Moore GR, Kleanthous C, Heck AJ, Maier CS (2002) Probing metal ion binding and conformational properties of the colicin E9 endonuclease by electrospray ionization time-of-flight mass spectrometry. Protein Sci 11:1738–1752CrossRefGoogle Scholar
  25. 25.
    Jeffrey PD, Bewley MC, MacGillivray RT, Mason AB, Woodworth RC, Baker EN (1998) Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin. Biochemistry 37:13978–13986CrossRefGoogle Scholar
  26. 26.
    Dobo A, Kaltashov IA (2001) Detection of multiple protein conformational ensembles in solution via deconvolution of charge state distributions in ESI MS. Anal Chem 73:4763–4773CrossRefGoogle Scholar
  27. 27.
    Mohimen A, Dobo A, Hoerner JK, Kaltashov IA (2003) A chemometric approach to detection and characterization of multiple protein conformers in solution using electrospray ionization mass spectrometry. Anal Chem 75:4139–4147CrossRefGoogle Scholar
  28. 28.
    Komives EA (2005) Protein–protein interaction dynamics by amide H/2H exchange mass spectrometry. Int J Mass Spectrom 240:285–290CrossRefGoogle Scholar
  29. 29.
    Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25:158–170CrossRefGoogle Scholar
  30. 30.
    Xiao H, Hoerner JK, Eyles SJ, Dobo A, Voigtman E, Mel’cuk AI, Kaltashov IA (2005) Mapping protein energy landscapes with amide hydrogen exchange and mass spectrometry: I. A generalized model for a two-state protein and comparison with experiment. Protein Sci 14:543–557CrossRefGoogle Scholar
  31. 31.
    Engen JR, Smith DL (2001) Investigating protein structure and dynamics by hydrogen exchange MS. Anal Chem 73:256A–265ACrossRefGoogle Scholar
  32. 32.
    Kaltashov IA, Eyles SJ (2002) Crossing the phase boundary to study protein dynamics and function: combination of amide hydrogen exchange in solution and ion fragmentation in the gas phase. J Mass Spectrom 37:557–565CrossRefGoogle Scholar
  33. 33.
    Wang F, Li W, Emmett MR, Marshall AG, Corson D, Sykes BD (1999) Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca2+-induced conformational changes in the regulatory domain of human cardiac troponin C. J Am Soc Mass Spectrom 10:703–710CrossRefGoogle Scholar
  34. 34.
    Gonzalez de Peredo A, Saint-Pierre C, Latour JM, Michaud-Soret I, Forest E (2001) Conformational changes of the ferric uptake regulation protein upon metal activation and DNA binding; first evidence of structural homologies with the diphtheria toxin repressor. J Mol Biol 310:83–91CrossRefGoogle Scholar
  35. 35.
    Krishna MMG, Hoang L, Lin Y, Englander SW (2004) Hydrogen exchange methods to study protein folding. Methods 34:51–64CrossRefGoogle Scholar
  36. 36.
    Xiao H, Kaltashov IA, Eyles SJ (2003) Indirect assessment of small hydrophobic ligand binding to a model protein using a combination of ESI MS and HDX/ESI MS. J Am Soc Mass Spectrom 14:506–515CrossRefGoogle Scholar
  37. 37.
    Zhu MM, Rempel DL, Du Z, Gross ML (2003) Quantification of protein-ligand interactions by mass spectrometry, titration, and H/D exchange: PLIMSTEX. J Am Chem Soc 125:5252–5253CrossRefGoogle Scholar
  38. 38.
    Zhu MM, Rempel DL, Zhao J, Giblin DE, Gross ML (2003) Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength. Biochemistry 42:15388–15397CrossRefGoogle Scholar
  39. 39.
    Chivers PT, Sauer RT (2002) NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. Chem Biol 9:1141–1148CrossRefGoogle Scholar
  40. 40.
    Mazon H, Marcillat O, Forest E, Vial C (2003) Changes in MM-CK conformational mobility upon formation of the ADP–Mg2+–NO 3 creatine transition state analogue complex as detected by hydrogen/deuterium exchange. Biochemistry 42:13596–13604CrossRefGoogle Scholar
  41. 41.
    Kulkarni PP, She YM, Smith SD, Roberts EA, Sarkar B (2006) Proteomics of metal transport and metal-associated diseases. Chemistry 12:2410–2422CrossRefGoogle Scholar
  42. 42.
    Stutz H (2005) Advances in the analysis of proteins and peptides by capillary electrophoresis with matrix-assisted laser desorption/ionization and electrospray–mass spectrometry detection. Electrophoresis 26:1254–1290CrossRefGoogle Scholar
  43. 43.
    Prange A, Profrock D (2005) Application of CE-ICP-MS and CE-ESI-MS in metalloproteomics: challenges, developments, and limitations. Anal Bioanal Chem 383:372–389CrossRefGoogle Scholar
  44. 44.
    Prange A, Schaumloffel D (2002) Hyphenated techniques for the characterization and quantification of metallothionein isoforms. Anal Bioanal Chem 373:441–453CrossRefGoogle Scholar
  45. 45.
    Nischwitz V, Michalke B, Kettrup A (2003) Identification and quantification of metallothionein isoforms and superoxide dismutase in spiked liver extracts using HPLC-ESI-MS offline coupling and HPLC-ICP-MS online coupling. Anal Bioanal Chem 375:145–156Google Scholar
  46. 46.
    Thompson DK, Beliaev AS, Giometti CS, Tollaksen SL, Khare T, Lies DP, Nealson KH, Lim J, Yates J, Brandt CC, Tiedje JM, Zhou JZ (2002) Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: Possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl Environ Microbiol 68:881–892CrossRefGoogle Scholar
  47. 47.
    Khare T, Esteve-Nunez A, Nevin KP, Zhu WH, Yates JR, Lovley D, Giometti C S (2006) Differential protein expression in the metal-reducing bacterium Geobacter sulfurreducens strain PCA grown with fumarate or ferric citrate. Proteomics 6:632–640CrossRefGoogle Scholar
  48. 48.
    Wind M, Lehmann WD (2004) Element and molecular mass spectrometry an emerging analytical dream team in the life sciences. J Anal Atom Spectrom 19:20–25CrossRefGoogle Scholar
  49. 49.
    Haraguchi H (2004) Metallomics as integrated biometal science. J Anal Atom Spectrom 19:5–14CrossRefGoogle Scholar
  50. 50.
    Szpunar J (2004) Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem 378:54–56CrossRefGoogle Scholar
  51. 51.
    Zhang M, Gumerov DR, Kaltashov IA, Mason AB (2004) Indirect detection of protein-metal binding: Interaction of serum transferrin with In3+ and Bi3+. J Am Soc Mass Spectrom 15:1658–1664CrossRefGoogle Scholar
  52. 52.
    Choudhury SB, Lee JW, Davidson G, Yim YI, Bose K, Sharma ML, Kang SO, Cabelli DE, Maroney MJ (1999) Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase. Biochemistry 38:3744–3752CrossRefGoogle Scholar
  53. 53.
    Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO (1996) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J 318:889–896Google Scholar
  54. 54.
    Wuerges J, Lee J-W, Yim Y-I, Yim H-S, Kang S-O, Carugo KD (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci USA 101:8569–8574CrossRefGoogle Scholar
  55. 55.
    Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Nickel superoxide dismutase structure and mechanism. Biochemistry 43:8038–8047CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Igor A. Kaltashov
    • 1
  • Mingxuan Zhang
    • 1
  • Stephen J. Eyles
    • 2
  • Rinat R. Abzalimov
    • 1
  1. 1.Department of ChemistryUniversity of Massachusetts-AmherstAmherstUSA
  2. 2.Department of Polymer Science and Engineering, University of Massachusetts at AmherstAmherstUSA

Personalised recommendations