Analytical and Bioanalytical Chemistry

, Volume 386, Issue 1, pp 69–82 | Cite as

Combined use of ESI–QqTOF-MS and ESI–QqTOF-MS/MS with mass-spectral library search for qualitative analysis of drugs

  • Marion Pavlic
  • Kathrin Libiseller
  • Herbert OberacherEmail author
Special Issue Paper


The potential of the combined use of ESI–QqTOF-MS and ESI–QqTOF-MS/MS with mass-spectral library search for the identification of therapeutic and illicit drugs has been evaluated. Reserpine was used for standardizing experimental conditions and for characterization of the performance of the applied mass spectrometric system. Experiments revealed that because of the mass accuracy, the stability of calibration, and the reproducibility of fragmentation, the QqTOF mass spectrometer is an appropriate platform for establishment of a tandem-mass-spectral library. Three-hundred and nineteen substances were used as reference samples to build the spectral library. For each reference compound, product-ion spectra were acquired at ten different collision-energy values between 5 eV and 50 eV. For identification of unknown compounds, a library search algorithm was developed. The closeness of matching between a measured product-ion spectrum and a spectrum stored in the library was characterized by a value called “match probability”, which took into account the number of matched fragment ions, the number of fragment ions observed in the two spectra, and the sum of the intensity differences calculated for matching fragments. A large value for the match probability indicated a close match between the measured and the reference spectrum. A unique feature of the library search algorithm—an implemented spectral purification option—enables characterization of multi-contributor fragment-ion spectra. With the aid of this software feature, substances comprising only 1.0% of the total amount of binary mixtures were unequivocally assigned, in addition to the isobaric main contributors. The spectral library was successfully applied to the characterization of 39 forensic casework samples.


Mass-spectral library Electrospray ionization mass spectrometry Time-of-flight mass spectrometry “General unknown screening” 



The authors wish to thank Applied Biosystems for the generous provision of the mass spectrometer and the associated equipment.

Supplementary material


  1. 1.
    Maurer HH (1998) J Chromatogr B 713:3–25CrossRefGoogle Scholar
  2. 2.
    Marquet P (2002) Ther Drug Monit 24:125–133CrossRefGoogle Scholar
  3. 3.
    Rivier L (2003) Anal Chim Acta 492:69–82CrossRefGoogle Scholar
  4. 4.
    Marquet P, Lachatre G (1999) J Chromatogr B 733:93–118CrossRefGoogle Scholar
  5. 5.
    Bogusz MJ (2000) J Chromatogr B 748:3–19CrossRefGoogle Scholar
  6. 6.
    Niessen WM (2003) J Chromatogr A 1000:413–436CrossRefGoogle Scholar
  7. 7.
    Smyth WF, Brooks P (2004) Electrophoresis 25:1413–1446CrossRefGoogle Scholar
  8. 8.
    Maurer HH (2005) Anal Bioanal Chem 381:110–118CrossRefGoogle Scholar
  9. 9.
    Bristow AW (2006) Mass Spectrom Rev 25:99–111CrossRefGoogle Scholar
  10. 10.
    Chernushevich IV, Loboda AV, Thomson BA (2001) J Mass Spectrom 36:849–865CrossRefGoogle Scholar
  11. 11.
    Hernandez F, Ibanez M, Sancho JV, Pozo OJ (2004) Anal Chem 76:4349–4357CrossRefGoogle Scholar
  12. 12.
    Thurman EM, Ferrer I, Fernandez-Alba AR (2005) J Chromatogr A 1067:127–134CrossRefGoogle Scholar
  13. 13.
    Gergov M, Boucher B, Ojanpera I, Vuori E (2001) Rapid Commun Mass Spectrom 15:521–526CrossRefGoogle Scholar
  14. 14.
    Nielen MW, Vissers JP, Fuchs RE, van Velde JW, Lommen A (2001) Rapid Commun Mass Spectrom 15:1577–1585CrossRefGoogle Scholar
  15. 15.
    Zhang H, Heinig K, Henion J (2000) J Mass Spectrom 35:423–431CrossRefGoogle Scholar
  16. 16.
    Pelander A, Ojanpera I, Laks S, Rasanen I, Vuori E (2003) Anal Chem 75:5710–5718CrossRefGoogle Scholar
  17. 17.
    Laks S, Pelander A, Vuori E, Ali-Tolppa E, Sippola E, Ojanpera I (2004) Anal Chem 76:7375–7379CrossRefGoogle Scholar
  18. 18.
    Hopfgartner G, Vilbois F (2000) Analusis 28:906–914Google Scholar
  19. 19.
    Mortishire-Smith RJ, O’Connor D, Castro-Perez JM, Kirby J (2005) Rapid Commun Mass Spectrom 19:2659–2670CrossRefGoogle Scholar
  20. 20.
    Shukla AK, Futrell JH (2000) J Mass Spectrom 35:1069–1090CrossRefGoogle Scholar
  21. 21.
    Sleno L, Volmer DA (2004) J Mass Spectrom 39:1091–1112CrossRefGoogle Scholar
  22. 22.
    Gabelica V, De Pauw E (2005) Mass Spectrom Rev 24:566–587CrossRefGoogle Scholar
  23. 23.
    Bogusz MJ, Maier RD, Kruger KD, Webb KS, Romeril J, Miller ML (1999) J Chromatogr A 844:409–418CrossRefGoogle Scholar
  24. 24.
    Bristow AW, Nichols WF, Webb KS, Conway B (2002) Rapid Commun Mass Spectrom 16:2374–2386CrossRefGoogle Scholar
  25. 25.
    Gergov M, Weinmann W, Meriluoto J, Uusitalo J, Ojanpera I (2004) Rapid Commun Mass Spectrom 18:1039–1046CrossRefGoogle Scholar
  26. 26.
    Weinmann W, Stoertzel M, Vogt S, Svoboda M, Schreiber A (2001) J Mass Spectrom 36:1013–1023CrossRefGoogle Scholar
  27. 27.
    Josephs JL, Sanders M (2004) Rapid Commun Mass Spectrom 18:743–759CrossRefGoogle Scholar
  28. 28.
    Weinmann W, Gergov M, Goerner M (2000) Analusis 28:934–941Google Scholar
  29. 29.
    Jansen R, Lachatre G, Marquet P (2005) Clin Biochem 38:362–372CrossRefGoogle Scholar
  30. 30.
    Milman BL (2005) Trends Anal Chem 24:493–508CrossRefGoogle Scholar
  31. 31.
    Lips AG, Lameijer W, Fokkens RH, Nibbering NM (2001) J Chromatogr B 759:191–207CrossRefGoogle Scholar
  32. 32.
    Pihlainen K, Sippola E, Kostiainen R (2003) J Chromatogr A 994:93–102CrossRefGoogle Scholar
  33. 33.
    Rittner M, Pragst F, Bork WR, Neumann J (2001) J Anal Toxicol 25:115–124Google Scholar
  34. 34.
    Schreiber A, Efer J, Engewald W (2000) J Chromatogr A 869:411–425CrossRefGoogle Scholar
  35. 35.
    Venisse N, Marquet P, Duchoslav E, Dupuy JL, Lachatre G (2003) J Anal Toxicol 27:7–14Google Scholar
  36. 36.
    Weinmann W, Wiedemann A, Eppinger B, Renz M, Svoboda M (1999) J Am Soc Mass Spectrom 10:1028–1037CrossRefGoogle Scholar
  37. 37.
    Slobodnik J, Hogenboom AC, Vreuls JJ, Rontree JA, van Baar BLM, Niessen WM, Brinkman UA (1996) J Chromatogr A 741:59–74CrossRefGoogle Scholar
  38. 38.
    Kratzsch C, Peters FT, Kraemer T, Weber AA, Maurer HH (2003) J Mass Spectrom 38:283–295CrossRefGoogle Scholar
  39. 39.
    Decaestecker TN, Vande C Sr, Wallemacq PE, Van Peteghem CH, Defore DL, Van Bocxlaer JF (2004) Anal Chem 76:6365–6373CrossRefGoogle Scholar
  40. 40.
    Balogh MP (2004) LC–GC Europe 17:352–359Google Scholar
  41. 41.
    Stolker AAM, Stephany RW, van Ginkel LA (2000) Analusis 28:947–951Google Scholar
  42. 42.
    Dudley E, Tuytten R, Bond A, Lemiere F, Brenton AG, Esmans EL, Newton RP (2005) Rapid Commun Mass Spectrom 19:3075–3085CrossRefGoogle Scholar
  43. 43.
    Marquet P, Venisse N, Lachatre G (2000) Analusis 28:925–934CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Marion Pavlic
    • 1
  • Kathrin Libiseller
    • 1
  • Herbert Oberacher
    • 1
    Email author
  1. 1.Institute of Legal MedicineInnsbruck Medical UniversityInnsbruckAustria

Personalised recommendations