Analytical and Bioanalytical Chemistry

, Volume 386, Issue 5, pp 1267–1272 | Cite as

Development and characterization of an integrated silicon micro flow cytometer

  • R. Bernini
  • E. De Nuccio
  • F. Brescia
  • A. Minardo
  • L. Zeni
  • P. M. Sarro
  • R. Palumbo
  • M. R. Scarfi
Original Paper

Abstract

This paper describes an innovative integrated micro flow cytometer that presents a new arrangement for the excitation/detection system. The sample liquid, containing the fluorescent marked particles/cells under analysis, is hydrodynamically squeezed into a narrow stream by two sheath flows so that the particles/cells flow individually through a detection region. The detection of the particles/cells emitted fluorescence is carried out by using a collection fiber placed orthogonally to the flow. The device is based on silicon hollow core antiresonant reflecting optical waveguides (ARROWs). ARROW geometry allows one to use the same channel to guide both the sample stream and the fluorescence excitation light, leading to a simplification of the optical configuration and to an increase of the signal-to-noise ratio. The integrated micro flow cytometer has been characterized by using biological samples marked with standard fluorochromes. The experimental investigation confirms the success of the proposed microdevice in the detection of cells.

Keywords

Microfluidics Microfabrication Optical sensors Biochips High-throughput screening 

References

  1. 1.
    Huh D, Gu W, Kamotani Y, Groteberg JB, Takayama S (2005) Physiol Meas 26:73–98CrossRefGoogle Scholar
  2. 2.
    Grunde C, Skerlos S, Adriaens P (2004) FEMS Micorbiol Ecol 49:37–49CrossRefGoogle Scholar
  3. 3.
    Tung YC, Zhang M, Lin CT, Kurabayashi K, Skerlos SJ (2004) Sens Actuators B Chem 98:356–367CrossRefGoogle Scholar
  4. 4.
    Lin CH, Lee GB (2003) J Micromech Microeng 13:447–453CrossRefGoogle Scholar
  5. 5.
    Kruger J, Singh K, O’Neill A, Jackson C, Morrison A, O’Brien P (2002) J Micromech Microeng 12:486–494CrossRefGoogle Scholar
  6. 6.
    Wang Z, El-Ali J, Engelund M, Gotsæd T, Perch-Nielsen IR, Mogensen, Snakenborg D, Kutter JP, Wolff A (2004) Lab Chip 4:372–377CrossRefGoogle Scholar
  7. 7.
    Huh D, Tung YC, Wei HH, Grotberg JB, Skerlos SJ, Kurabayashi K, Takayama S (2002) Biomed Microdevices 4:141–149CrossRefGoogle Scholar
  8. 8.
    Chung S, Park SJ, Kim JK, Chung C, Han DC, Chang JK (2003) Microsyst Technol 9:525–533CrossRefGoogle Scholar
  9. 9.
    McClain MA, Culbertson CT, Jacobson SC, Ramsey JM (2001) Anal Chem 73:5334–5338CrossRefGoogle Scholar
  10. 10.
    Holmes D, Morgan H, Green NG (2006) Biosens Bioelectron 21:1621–1630CrossRefGoogle Scholar
  11. 11.
    Lee Gwo-Bin, Lin Che-Hsin, Chang Guan-Liang (2003) Sens Actuators A Phys 103:165–170CrossRefGoogle Scholar
  12. 12.
    Bernini R, Campopiano S, Zeni L (2002) IEEE J Selected Topics Quantum Elect 8:106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • R. Bernini
    • 1
  • E. De Nuccio
    • 2
  • F. Brescia
    • 1
  • A. Minardo
    • 2
  • L. Zeni
    • 2
  • P. M. Sarro
    • 3
  • R. Palumbo
    • 4
  • M. R. Scarfi
    • 1
  1. 1.IREA-CNRNapoliItaly
  2. 2.DIISeconda Università di NapoliAversaItaly
  3. 3.ECTM-DIMESDelftThe Netherlands
  4. 4.IBB-CNRNapoliItaly

Personalised recommendations