Analytical and Bioanalytical Chemistry

, Volume 386, Issue 2, pp 211–219 | Cite as

Preparation and evaluation of spore-specific affinity-augmented bio-imprinted beads

  • Scott D. HarveyEmail author
  • Gary M. Mong
  • Richard M. Ozanich
  • Jeffrey S. Mclean
  • Shannon M. Goodwin
  • Nancy B. Valentine
  • Jim K. Fredrickson
Original Paper


A novel, affinity-augmented, bacterial spore-imprinted, bead material was synthesized, based on a procedure developed for vegetative bacteria. The imprinted beads were intended as a front-end spore capture/concentration stage of an integrated biological detection system. Our approach involved embedding bead surfaces with Bacillus thuringiensis kurstaki (Bt) spores (as a surrogate for Bacillus anthracis) during synthesis. Subsequent steps involved lithographic deactivation using a perfluoroether; spore removal to create imprint sites; and coating imprints with the lectin, concanavalin A, to provide general affinity. The synthesis of the intended material with the desired imprints was verified by scanning electron and confocal laser-scanning microscopy. The material was evaluated using spore-binding assays with either Bt or Bacillus subtilis (Bs) spores. The binding assays indicated strong spore-binding capability and a robust imprinting effect that accounted for 25% additional binding over non-imprinted controls. The binding assay results also indicated that further refinement of the surface deactivation procedure would enhance the performance of the imprinted substrate.


Bio-imprinted beads Selective spore capture/concentration Analysis of biological pathogens 



We gratefully acknowledge the Laboratory Directed Research and Development program for funding this research through the Homeland Security Initiative at Pacific Northwest National Laboratory. We also acknowledge the assistance of Catherine E. Petersen in collecting MALDI spectra. Pacific Northwest National Laboratory is a multi-program national laboratory operated by the Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830.


  1. 1.
    Straub TM, Dockendorff BP, Quinonez-Diaz MD, Valdez CO, Shutthanandan JI, Tarasevich BJ, Grate JW, Bruckner-Lea CJ (2005) J Microbiol Methods 62:303–316CrossRefGoogle Scholar
  2. 2.
    Bruckner-Lea C, Tsukuda JT, Dockendorff B, Follansbee JC, Kingsley MT, Ocampo C, Stults JR, Chandler DP (2002) Anal Chim Acta 469:129–140CrossRefGoogle Scholar
  3. 3.
    Chandler, DP, Brown J, Call DR, Grate JW, Holman DA, Olson L, Stottlemyre MS, Bruckner-Lea CJ (2001) Int J Food Microbiol 70:143–154CrossRefGoogle Scholar
  4. 4.
    Dickert FL, Hayden O (2002) Anal Chem 74:1302–1306CrossRefGoogle Scholar
  5. 5.
    Dickert FL, Hayden O, Halikias KP (2001) Analyst 126:766–771CrossRefGoogle Scholar
  6. 6.
    Dickert FL, Lieberzeit P, Hayden O (2003) Anal Bioanal Chem 377:540–549CrossRefGoogle Scholar
  7. 7.
    Hayden O, Dickert FL (2001) Adv Mater 13:1480–1483CrossRefGoogle Scholar
  8. 8.
    Hayden O, Bindeus R, Haderspock C, Mann K-J, Wirl B, Dickert FL (2003) Sens Actuators B 91:316–319CrossRefGoogle Scholar
  9. 9.
    Skaggs R, Straub T, Wright B, Bruckner-Lea C, Harvey S (2004) In: Mays L (ed) Water supply systems security, chapt 18. McGraw Hill, New York, pp 18.1–18.21Google Scholar
  10. 10.
    Berry ED, Siragusa GR (1999) J Rapid Methods Autom Microbiol 7:7–23Google Scholar
  11. 11.
    Fortina N, Beaumiera D, Leeb K, Greer CW (2004) J Microbiol Methods 56:181–191CrossRefGoogle Scholar
  12. 12.
    Marshall, KC (1991) In: Mozes N, Handley PS, Busscher HJ, Rouxhet PG (eds) Microbial cell surface analysis. VCH Publishers, New York, pp 5–19Google Scholar
  13. 13.
    Bundy JL, Fenselau C (2001) Anal Chem 73:751–757CrossRefGoogle Scholar
  14. 14.
    Bundy JL, Fenselau C (1999) Anal Chem 71:1460–1463CrossRefGoogle Scholar
  15. 15.
    Ertl P, Mikkelsen SR (2001) Anal Chem 73:4241–4248CrossRefGoogle Scholar
  16. 16.
    Dickert FL, Hayden O, Bindeus R, Mann K-J, Blaas D, Waigmann E (2004) Anal Bioanal Chem 378:1929–1934CrossRefGoogle Scholar
  17. 17.
    Aherne A, Alexander C, Payne MJ, Perez N, Vulfson EN (1996) J Am Chem Soc 118:8771–8772CrossRefGoogle Scholar
  18. 18.
    Alexander C, Vulfson EN (1997) Adv Mater 9:751–755CrossRefGoogle Scholar
  19. 19.
    Perez N, Alexander C, Vulfson EN (2001) In: Sellergren B (ed) Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry. Elsevier, Amsterdam, The Netherlands, pp 295–303Google Scholar
  20. 20.
    Cunliffe D, Alexander C (2002) In: Yan M, Ramstrom O (eds) Molecular imprinted materials: science and technology. Dekker, New York, pp 249–283Google Scholar
  21. 21.
    Alexander C, Kirsch N, Whitcombe MJ (2004) In: Davis FJ (ed) Polymer chemistry: a practical approach in chemistry. Oxford University Press, Oxford, UK, pp 201–214Google Scholar
  22. 22.
    Nicholson WL, Setlow P (1990) In: Harwood CR, Cutting SM (eds) Molecular biological methods for bacillus. Wiley, Chichester, England, pp 391–450Google Scholar
  23. 23.
    Fenselau C, Demirev PA (2001) Mass Spectrom Rev 20:157–171CrossRefGoogle Scholar
  24. 24.
    Koshikawa T, Yamazaki M, Yoshimi M, Ogawa S, Yamada A, Watabe K, Torii M (1989) J Gen Microbiol 135:271–2722Google Scholar
  25. 25.
    Faille C, Jullien C, Fontaine F, Bellon-Fontaine M-N, Slomianny C, Benezech T (2002) Can J Microbiol 48:728–738CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Scott D. Harvey
    • 1
    Email author
  • Gary M. Mong
    • 1
  • Richard M. Ozanich
    • 1
  • Jeffrey S. Mclean
    • 1
  • Shannon M. Goodwin
    • 1
  • Nancy B. Valentine
    • 1
  • Jim K. Fredrickson
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations