Effective PCR detection of animal species in highly processed animal byproducts and compound feeds

  • Olivier Fumière
  • Marc Dubois
  • Vincent Baeten
  • Christoph von Holst
  • Gilbert Berben
Original Paper


In this paper we present a polymerase chain reaction (PCR)-based method for detecting meat and bone meal (MBM) in compound feedingstuffs. By choosing adequate DNA targets from an appropriate localisation in the genome, the real-time PCR method developed here proved to be robust to severe heat treatment of the MBM, showing high sensitivity in the detection of MBM. The method developed here permits the specific detection of processed pig and cattle materials treated at 134 °C in various feed matrices down to a limit of detection of about 0.1%. This technique has also been successfully applied to well-characterised MBM samples heated to as high as 141 °C, as well as to various blind feed samples with very low MBM contents. Finally, the method also passed several official European ring trials.


Feed Meat and bone meal (MBM) BSE Polymerase chain reaction Real time PCR Mitochondrial DNA Species identification Pig Cattle 


  1. 1.
    European Communities (2001) EC Regulation 999/2001 of the European Parliament and of the Council, laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off J Europ Commun L 173:6–13Google Scholar
  2. 2.
    European Union (2003) Commission regulation (EC) 1234/2003 amending Annexes I, IV and XI to EC Regulation 999/2001. Off J Europ Union L 173:6–13Google Scholar
  3. 3.
    European Communities (2002) EC Regulation 1774/2002 of the European parliament and of the Council, laying down health rules concerning animal by-products not intended for human consumption. Off J Europ Commun L 273:1–95Google Scholar
  4. 4.
    European Union (2003) EC 2003/126 Commission Directive on the analytical method for the determination of constituents of animal origin for the official control of feedingstuffs. Off J Europ Union L 339:78–84Google Scholar
  5. 5.
    von Holst C, Boix A, Baeten V, Vancutsem J, Berben G (2006) Determination of processed animal proteins in feed: the performance characteristics of classical microscopy and immunoassay. Food Addit Contam 23(3):252–264CrossRefGoogle Scholar
  6. 6.
    EC (2005) The TSE roadmap. European Commission, Brussels, p 24 (available at: http://europa.eu.int/comm/food/food/biosafety/bse/roadmap_en.pdf, last accessed 19th May 2006)
  7. 7.
    Ansfield M, Reaney SD, Jackman R (2000) Production of a sensitive immunoassay for detection of ruminant and porcine proteins, heated to >130 °C at 2.7 bar, in compound animal feedstuffs. Food Agric Immun 12:273–284CrossRefGoogle Scholar
  8. 8.
    Gizzi G, von Holst C, Baeten V, Berben G, van Raamsdonk L (2004) Determination of processed animal proteins, including meat and bone meal, in animal feed. J AOAC Int 87(6):1334–1341Google Scholar
  9. 9.
    Murray I, Aucott LS, Pike IH (2001) Use of discriminant analysis on visible and near infrared reflectance spectra to detect adulteration of fishmeal with meat and bone meal. J Near Infrared Spec 9:297–311CrossRefGoogle Scholar
  10. 10.
    Baeten V, Dardenne P (2001) The contribution of near infrared spectroscopy to the fight against the mad cow epidemic. NIRS News 12(6):12–13Google Scholar
  11. 11.
    Garrido-Varo A, Pérez-Marín MD, Guerrero JE, Gómez-Cabrera A, de la Haba MJ, Bautista J, Soldado A, Vicente F, Martínez A, de la Roza-Delgado B, Termes S (2005) Near infrared spectroscopy for enforcement of European legislation concerning the use of animal by-products in animal feeds. Biotechnol Agron Soc Environ 9(1):3–9Google Scholar
  12. 12.
    Murray I, Garrido Varo A, Perez-Marin D, Guerrero JE, Baeten V, Dardenne P, Termes S, Zegers J, Frankhuizen R (2005) Macroscopic near-infrared reflectance spectroscopy (WP5). In: Strategies and methods to detect and quantify mammalian tissues in feedingstuffs. Office for the Official Publications of the European Communities, Luxembourg (ISBN 92-894-7356-8)Google Scholar
  13. 13.
    Piraux F, Dardenne P (2000) Microscopie-NIR appliquée aux aliments du bétail. Biotechnol Agron Soc Environ 4(4):226–232Google Scholar
  14. 14.
    Baeten V, Michotte Renier A, Sinnaeve G, Garrido Varo A, Dardenne P (2004) Analysis of the sediment fraction of feed by near-infrared microscopy (NIRM). In: Davies AMC, Garrido-Varo A (eds) Near Infrared Spectroscopy: Proceedings of the 11th International Conference. NIR Publications, Chichester, UK, pp 663–666Google Scholar
  15. 15.
    Baeten V, von Holst C, Fissiaux I, Michotte Renier A, Murray I, Dardenne P (2005) The near infrared microscopic (NIRM) method : a combination of the advantages of optical microscopy and near-infrared spectroscopy (WP5). In: Strategies and methods to detect and quantify mammalian tissues in feedingstuffs. Office for Official Publications of the European Communities, Luxembourg (ISBN 92-894-7356-8)Google Scholar
  16. 16.
    Baeten V, von Holst C, Garrido A, Vancutsem J, Michotte Renier A, Dardenne P (2005) Detection of banned meat and bone meal in feedstuffs by near-infrared microscopic analysis of the dense sediment fraction. Anal Bioanal Chem 382:149–157CrossRefGoogle Scholar
  17. 17.
    Michotte Renier A, Baeten V, Sinnaeve G, Fernández Pierna JA, Dardenne P (2004) The NIR camera: a new perspective for meat and bone meal detection in feedingstuffs. In: Davies AMC, Garrido-Varo A (eds) Near Infrared Spectroscopy: Proceedings of the 11th International Conference, NIR Publications, Chichester, UK, pp 1061–1065Google Scholar
  18. 18.
    Fernández Pierna JA, Baeten V, Michotte Renier A, Cogdill RP, Dardenne P (2005) Combination of SVM and NIR imaging spectroscopy for the detection of MBM in compound feeds. J Chem 18(7–8):341–349Google Scholar
  19. 19.
    Baeten V, Fernández Pierna JA, Michotte Renier A, Dardenne P (2005) Imagerie infrarouge: analyse de l’alimentation animale. Tech Ing 3:RE 34–1–8Google Scholar
  20. 20.
    Tartaglia M, Saulle E, Pestalozza S, Morelli L, Antonucci G, Battaglia PA (1998) Detection of bovine mitochondrial DNA in ruminant feeds: a molecular approach to test for the presence of bovine-derived materials. J Food Prot 61:513–518Google Scholar
  21. 21.
    von Holst C, Anklam E (1999) Method for the detection of bovine mitochondrial DNA in animal feedingstuffs of plant origin. Final report of the competitive support project N ° 86-7920/97/000008 Part 2: Validation study. Joint Research Centre, Ispra, Italy, p 35Google Scholar
  22. 22.
    Kingombe CIB, Lüthi E, Schlosser H, Howard D, Kuhn M, Jemmi T (2001) A PCR-based test for species-specific determination of heat treatment conditions of animal meals as an effective prophylactic method for bovine spongiform encephalopathy. Meat Sci 57:35–41CrossRefGoogle Scholar
  23. 23.
    Frezza D, Favaro M, Vaccari G, Giambra V, von Holst C, Anklam E, Bove D, Battaglia PA, Agrimi U, Brambilla G, Ajmone-Marsan P, Tartaglia M (2003) A competitive polymerase chain reaction-based approach for the identification and semi-quantification of mitochondrial DNA in differently heat-treated bovine meat and bone meal. J Food Prot 66:103–109Google Scholar
  24. 24.
    Chiappini B, Brambilla G, Agrimi U, Vaccari G, Aarts HJM, Berben G, Giambra V, Frezza D (2005) A real-time PCR approach for ruminant-specific DNA quantification indicates a correlation between DNA amount and MBM heat treatments. J AOAC Int 88(5):1399–1403Google Scholar
  25. 25.
    Gizzi G, von Holst C, Baeten V, Berben G, van Raamsdonk L (2003) Intercomparison study for the determination of processed animal proteins including meat and bone meal in animal feed. Final report of the Administrative arrangement N ° B5-1000/02/000483. Institute for Reference Materials and Measurements, Geel, Belgium, p 100Google Scholar
  26. 26.
    Momcilovic D, Rasooly A (2000) Detection and analysis of animal material in food and feed. J Food Prot 63:1602–1609Google Scholar
  27. 27.
    Gizzi G, van Raamsdonk L, Baeten V, Murray I, Berben G, Brambilla G, von Holst C (2003) An overview of tests for animal tissues in feeds applied in response to public health concerns regarding bovine spongiform encephalopathy. Rev Sci Tech Off Int Epiz 22(1):311–331Google Scholar
  28. 28.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  29. 29.
    Tartaglia M, Saulle E (1998) Rapid communication: nucleotide sequence of porcine and ovine tRNALys and ATPase8 mitochondrial genes. J Anim Sci 76:2207–2208Google Scholar
  30. 30.
    Dubois M, Fumière O, von Holst C, Berben G (2002) Meat and bone meal detection in feed by search of specific animal DNA segments. In: 181th Meeting of the Belg Soc Biochem Mol Biol, 4 May 2002, Katholieke Universiteit Leuven, Heverlee, Belgium, Abstr. 7 (available at: http://www.icp.ucl.ac.be/bsbmb/4may2002/abstracts_1_13.htm#dubois)
  31. 31.
    Burgener M, Hübner P (1998) Mitochondrial DNA enrichment for species identification and evolutionary analysis. Z Lebensm Unters Forsch 207:261–263CrossRefGoogle Scholar
  32. 32.
    Meyer R, Candrian U, Lüthy J (1993) Detection of pork in heated meat products by the polymerase chain reaction. J AOAC Int 77(3):617–622Google Scholar
  33. 33.
    Matsunaga T, Chikuni K, Tanabe R, Muroya S, Shibata K, Yamada J, Shinmura Y (1999) A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci 51:143–148CrossRefGoogle Scholar
  34. 34.
    Bellagamba F, Moretti VM, Comincini S, Valfrè F (2001) Identification of species in animal feedstuffs by polymerase chain reaction-restriction fragment length polymorphism analysis of mitochondrial DNA. J Agric Food Chem 49:3775–3781CrossRefGoogle Scholar
  35. 35.
    Meyer R, Hofelein C, Lüthy J, Candrian U (1995) Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. J AOAC Int 78:617–622Google Scholar
  36. 36.
    Wang RF, Myers MJ, Campbell W, Cao WW, Paine D, Cerniglia CE (2000) A rapid method for PCR detection of bovine materials in animal feedstuffs. Mol Cell Probes 14:1–5CrossRefGoogle Scholar
  37. 37.
    Colgan S, O’Brien L, Maher M, Shilton N, McDonnell K, Ward S (2001) Development of a DNA-based assay for species identification in meat and bone meal. Food Res Int 34(5):409–414CrossRefGoogle Scholar
  38. 38.
    Krčmáč; P, Renčová E (2001) Identification of bovine-specific DNA in feedstuffs. J Food Prot 64(1):117–119Google Scholar
  39. 39.
    Bellagamba F, Valfrè F, Panseri S, Moretti VM (2003) Polymerase chain reaction-based analysis to detect terrestrial animal in fish meal. J Food Prot 66(4):682–685Google Scholar
  40. 40.
    Bottero MT, Dalmasso A, Nucera D, Turi RM, Rosati S, Squadrone S, Goria M, Civera T (2003) Development of a PCR assay for the detection of animal tissues in ruminant feeds. J Food Prot 66(12):2307–2312Google Scholar
  41. 41.
    Krčmáč P, Renčová E (2003) Identification of species-specific DNA in feedstuffs. J Agric Food Chem 51:7655–7658CrossRefGoogle Scholar
  42. 42.
    Brodmann PD, Moor D (2003) Sensitive and semi-quantitative TaqMan real-time polymerase chain reaction systems for the detection of beef (Bos taurus) and the detection of the family Mammalia in food and feed. Meat Sci 65:599–607CrossRefGoogle Scholar
  43. 43.
    Prado M, Casqueiro J, Iglesias Y, Cepeda A, Barros-Velaquez J (2004) Application of a polymerase chain reaction (PCR) method as a complementary tool to microscopic analysis for the detection of bones and other animal tissues in home-made animal meals. J Sci Food Agric 84(6):505–512CrossRefGoogle Scholar
  44. 44.
    Pascoal A, Prado M, Calo P, Cepeda A, Barros-Velázquez J (2005) Detection of bovine DNA in raw and heat-processed foodstuffs, comercial foods and specific risk materials by a novel specific polymerase chain reaction method. Eur Food Res Technol 220:444–450CrossRefGoogle Scholar
  45. 45.
    Bellorini S, Strathmann S, Baeten V, Fumière O, Berben G, Tirendi S, von Holst Ch (2005) Discriminating animal fats and their origins : assessing the potentials of Fourier transform infrared spectroscopy, gas chromatography, immunoassay and polymerase chain reaction techniques. Anal Bioanal Chem 382:1073-1083CrossRefGoogle Scholar
  46. 46.
    Fumière O, Berben G, Fernández Pierna JA, André C, Dardenne P, Baeten V (2005) Speciation of mammalian MBM particles with NIRM and Real Time PCR analysis. Near Infrared Spectroscopy: Proceedings of the 12th International Conference, 10–15 April 2005, Auckland, New Zealand, Abstract ID169, p 165Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Olivier Fumière
    • 1
  • Marc Dubois
    • 1
  • Vincent Baeten
    • 1
  • Christoph von Holst
    • 2
  • Gilbert Berben
    • 1
  1. 1.Département Qualité des Productions AgricolesCentre Wallon de Recherches agronomiques (CRA-W)GemblouxBelgium
  2. 2.European Commission, Directorate-General Joint Research CentreInstitute for Reference Materials and Measurments (JRC-IRMM)GeelBelgium

Personalised recommendations