Analytical and Bioanalytical Chemistry

, Volume 385, Issue 7, pp 1186–1194

A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination

Special Issue Paper


Intelligent and automatic systems based on arrays of non-specific-response chemical sensors were recently developed in our laboratory. For multidetermination applications, the normal choice is an array of potentiometric sensors to generate the signal, and an artificial neural network (ANN) correctly trained to obtain the calibration model. As a great amount of information is required for the proper modelling, we proposed its automated generation by using the sequential injection analysis (SIA) technique. First signals used were steady-state: the equilibrium signal after a step-change in concentration. We have now adapted our procedures to record the transient response corresponding to a sample step. The novelty in this approach is therefore the use of the dynamic components of the signal in order to better discriminate or differentiate a sample. In the developed electronic tongue systems, detection is carried out by using a sensor array formed by five potentiometric sensors based on PVC membranes. For the developed application we employed two different chloride-selective sensors, two nitrate-selective sensors and one generic response sensor. As the amount of raw data (fivefold recordings corresponding to the five sensors) is excessive for an ANN, some feature extraction step prior to the modelling was needed. In order to attain substantial data reduction and noise filtering, the data obtained were fitted with orthonormal Legendre polynomials. In this case, a third-degree Legendre polynomial was shown to be sufficient to fit the data. The coefficients of these polynomials were the input information fed into the ANN used to model the concentrations of the determined species (Cl, \({\text{ NO}}^{{\text{ - }}}_{{\text{3}}} \) and \({\text{HCO}}^{{\text{ - }}}_{{\text{3}}} \)). Best results were obtained by using a backpropagation neural network trained with the Bayesian regularisation algorithm; the net had a single hidden layer containing three neurons with the tansig transfer function. The results obtained from the time-dependent response were compared with those obtained from steady-state conditions, showing the former superior performance. Finally, the method was applied for determining anions in synthetic samples and real water samples, where a satisfactory comparison was also achieved.


Electronic tongue Artificial neural network Sequential injection analysis Sensor array Anion multidetermination Transient response 


  1. 1.
    Di Natale C, Macagnano A, Davide F, D’Amico A, Legin A, Vlasov Y, Rudnitskaya A, Selezenev B (1997) Sens Actuators B 44:423–428CrossRefGoogle Scholar
  2. 2.
    Toko K (1998) Biosens Bioelectron 13:701–709CrossRefGoogle Scholar
  3. 3.
    Krantz-Rülcker C, Stenberg M, Winquist F, Lundström I (2001) Anal Chim Acta 426:217–226CrossRefGoogle Scholar
  4. 4.
    Lavigne JJ, Savoy S, Clevenger MB, Ritchie JE, McDoniel B, Yoo SJ, Anslyn EV, McDevitt JT, Shear JB, Neikirk D (1998) J Am Chem Soc 120:6429–6430CrossRefGoogle Scholar
  5. 5.
    Gardner JW, Barlett PN (1994) Sens Actuators B 18–19:211–220Google Scholar
  6. 6.
    Bos M, Bos A, van der Linden WE (1990) Anal Chim Acta 233:31–39CrossRefGoogle Scholar
  7. 7.
    Baret M, Massart DL, Fabry P, Conesa F, Eichner C, Menardo C (2000) Talanta 51:863–877CrossRefGoogle Scholar
  8. 8.
    Gallardo J, Alegret S, Muñoz R, De Román M, Leija L, Hernández PR, del Valle M (2003) Anal Bioanal Chem 377:248–256CrossRefGoogle Scholar
  9. 9.
    Gallardo J, Alegret S, De Román M, Muñoz R, Hernández PR, Leija L, del Valle M (2003) Anal Lett 14:2893–2908CrossRefGoogle Scholar
  10. 10.
    Gallardo J, Alegret S, Muñoz R, Leija L, Hernández PR, del Valle M (2005) Electroanalysis 17:348–355CrossRefGoogle Scholar
  11. 11.
    Gutés A, Céspedes F, Alegret S, del Valle M (2005) Talanta 66:1187–1196CrossRefGoogle Scholar
  12. 12.
    Cortina M, Gutés A, Alegret S, del Valle M (2005) Talanta 66:1197–1206CrossRefGoogle Scholar
  13. 13.
    Santos E, Conceição M, Montenegro BSM, Couto C, Araújo AN, Pimentel MF, da Silva VL (2004) Talanta 63:721–727CrossRefGoogle Scholar
  14. 14.
    Simons J, Bos M, van der Linden WE (1995) Analyst 120:1009–1012CrossRefGoogle Scholar
  15. 15.
    Richards E, Bessant C, Saini S (2004) Analyst 129:355–358CrossRefGoogle Scholar
  16. 16.
    Richards E, Bessant C, Saini S (2002) Chemometr Intell Lab Syst 61:35–49CrossRefGoogle Scholar
  17. 17.
    Tchistiakov V, Ruckebusch C, Duponchel L, Huvenne JP, Legrand P (2000) Chemom Intell Lab Syst 54:93–106CrossRefGoogle Scholar
  18. 18.
    Walczak B, Massart DL (1997) Chemom Intell Lab Syst 36:81–94CrossRefGoogle Scholar
  19. 19.
    de Carvalho RM, Mello C, Kubota LT (2000) Anal Chim Acta 420:109–121CrossRefGoogle Scholar
  20. 20.
    Artusson T, Spångeus P, Holmberg M (2002) Anal Chim Acta 452 :255–264CrossRefGoogle Scholar
  21. 21.
    Ensafi AA, Khayamian T, Atabati M (2002) Talanta 57:785–793CrossRefGoogle Scholar
  22. 22.
    Jetter K, Depczynsky U, Molt K, Niemöller A (2000) Anal Chim Acta 420:169–180CrossRefGoogle Scholar
  23. 23.
    Artusson T, Holmberg M (2002) Sens Actuators B 87:379–391CrossRefGoogle Scholar
  24. 24.
    Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw Hill, New YorkGoogle Scholar
  25. 25.
    Durán A, Cortina M, Velasco L, Rodríguez JA, Alegret S, del Valle M (2006) Sensors 6:19–29Google Scholar
  26. 26.
    Alonso J, Baró J, Bartrolí J, Sánchez J, del Valle M (1995) Anal Chim Acta 308:115–121CrossRefGoogle Scholar
  27. 27.
    Pérez-Olmos R, Rios A, Fernández JR, Lapa RAS, Lima JLFC (2001) Talanta 53:741–748CrossRefGoogle Scholar
  28. 28.
    Andreakis GE, Moschou EA, Matthaiou K, Froudakis GE, Chaniotakis NA (2001) Anal Chim Acta 439:273–280CrossRefGoogle Scholar
  29. 29.
    Koizumi S, Imato T, Ishibashi N (1997) Fresenius J Anal Chem 357:37–43CrossRefGoogle Scholar
  30. 30.
    Steinle ED, Schaller U, Meyerhoff ME (1998) Anal Sci 14:79–84CrossRefGoogle Scholar
  31. 31.
    Isildak I, Asan A (1999) Talanta 48:967–978CrossRefGoogle Scholar
  32. 32.
    Demuth H, Baele M (1992) Neural network toolbox, for use with MATLAB. Mathwork Inc, Natick, MA, USAGoogle Scholar
  33. 33.
    Mackay JC (1995) Probable networks and plausible predictions: a review of practical Bayesian methods for supervised neural networks. Technical Report, Cavendish Laboratory, Cambridge, UKGoogle Scholar
  34. 34.
    Diamond D (1998) Principles of chemical and biological sensors. Wiley, New YorkGoogle Scholar
  35. 35.
    Distante C, Leo M, Siciliano P, Persaud KC (2002) Sens Actuators B 87:274–288CrossRefGoogle Scholar
  36. 36.
    Ionescu R, Llobet E, Brezmes J, Vilanova X, Correig X (2003) Sens Actuators B 95:177–182CrossRefGoogle Scholar
  37. 37.
    Gutierrez-Osuna R, Gutierrez-Galveza A, Powarb N (2003) Sens Actuators B 93:57–66CrossRefGoogle Scholar
  38. 38.
    Gallardo J, Alegret S, del Valle M (2004) Sens Actuators B 101:72–80CrossRefGoogle Scholar
  39. 39.
    Gutés A, Céspedes F, Alegret S, del Valle M (2005) Biosens Bioelectron 20:1668–1673CrossRefGoogle Scholar
  40. 40.
    Despagne F, Massart DL (1998) Analyst 123:157R–178RCrossRefGoogle Scholar
  41. 41.
    Baret M, Massart DL, Fabry P, Menardo D, Conesa F (1999) Talanta 50:541–558CrossRefGoogle Scholar
  42. 42.
    Gross L, Yeung E (1989) J Chromatogr 480:169–178CrossRefGoogle Scholar
  43. 43.
    American Society for Testing and Materials (1982) Standard methods for acidity or alkalinity of water. American Soc. Testing & Materials, Philadelphia, PA D1067-70 (reapproved 1977)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Cortina
    • 1
  • A. Duran
    • 2
  • S. Alegret
    • 1
  • M. del Valle
    • 1
  1. 1.Sensors and Biosensors Group, Department of ChemistryAutonomous University of BarcelonaBellaterraSpain
  2. 2.Materials and Reactants InstituteHavana UniversityHavanaCuba

Personalised recommendations