Advertisement

Analytical and Bioanalytical Chemistry

, Volume 385, Issue 8, pp 1362–1369 | Cite as

Laser processing for bio-microfluidics applications (part II)

  • Chantal G. Khan MalekEmail author
Review

Abstract

This paper reviews applications of laser-based techniques to the fabrication of microfluidic devices for biochips and addresses some of the challenges associated with the manufacture of these devices. Special emphasis is placed on the use of lasers for the rapid prototyping and production of biochips, in particular for applications in which silicon is not the preferred material base. This review addresses applications and devices based on ablation using femtosecond lasers, infrared lasers as well as laser-induced micro-joining, and the laser-assisted generation of micro-replication tools, for subsequent replication of polymeric chips with a technique like laser LIGA.

Keywords

Laser Micromachining Bio-MEMS μTAS Microfluidics Polymers 

Notes

Acknowledgement

This work was performed within the framework of the 4M Network of Excellence “Multi material micro manufacture: technology and applications (4M)” (EC funding FP6-500274-1; http://www.4m-net.org).

References

  1. 1.
    Marcinkevicius A, Juodkazis S, Mizeikis V, Watanabe M, Matsuo S, Nishii J, Misawa H (2001) Fabrication of 3D interconnected network of microchannels inside silica by femtosecond irradiation and etching. Proc SPIE 4274:469–477CrossRefGoogle Scholar
  2. 2.
    Jiang Y, Itoh K, Watanabe W, Yamada K, Kuroda D, Nishii J, Jiang Y (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26(23):1912–1914Google Scholar
  3. 3.
    Ben-Yakar A, Byer RL (2002) Femtosecond laser machining of fluidic microchannels for miniaturized bioanalytical systems. Proc SPIE 4637:212–217CrossRefGoogle Scholar
  4. 4.
    Giridhar MS, Seong K, Schülzgen A, Khulbe P, Peyghambarian N, Mansuripur M (2004) Femtosecond pulsed laser micromachining of glass susbstates with application to microfluidic devices. Appl Opt 43:4584–4589CrossRefGoogle Scholar
  5. 5.
    Hwang DJ, Choi TY, Grigoropoulos CP (2004) Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass. Appl Phys A 79:605–612CrossRefGoogle Scholar
  6. 6.
    An R, Li Y, Dou Y, Yang H, Gong Q (2005) Simultaneous multi-microhole drilling of sodalime glass by water-assisted ablation with femtosecond laser pulses. Opt Express 13(6):1855–1858CrossRefGoogle Scholar
  7. 7.
    Iga Y, Ishizuka T, Watanabe W, Itoh K, Li Y, Nishii J (2004) Jpn J Appl Phys Part1 43:4207–4211CrossRefGoogle Scholar
  8. 8.
    Cheng Y, Sugioka K, Masuda M, Toyoda K, Kawachi M, Shihoyama K, Midorikawa K (2003) 3D microstructuring inside Foturan glass by femtosecond laser. RIKEN Rev N°50:101–106Google Scholar
  9. 9.
    Masuda M, Sugioka K, Cheng Y, Kawachi M, Shihoyama K, Toyoda K, Midorikawa K (2003) Fabrication of 3D microreactor structures embedded in photosensitive glass by femtosecond laser. SPIE Proc 5063:98–102CrossRefGoogle Scholar
  10. 10.
    Sugioka K, Cheng Y, Masuda M, Midorikawa K, Shihoyama K (2004) Fabrication of microreactors in photostructurable glass by 3D femtosecond laser direct write. Proc SPIE 5339:205–213CrossRefGoogle Scholar
  11. 11.
    Sugioka K, Cheng Y, Midorikawa K (2005) Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Appl Physics A 81:1–10CrossRefGoogle Scholar
  12. 12.
    Said AA, Dugan M, Bado P, Bellouard Y, Scott A, Mabesa JR Jr (2004) Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks. Proc SPIE 5339:194–204CrossRefGoogle Scholar
  13. 13.
    Ke K, Hasselbrink EF, Hunt AJ (2005) Rapidly prototyping three-dimensional nanofluidic channel networks in glass substates. Anal Chem 77:5083–5088CrossRefGoogle Scholar
  14. 14.
    Wolfe DB, Ashcom JB, Hwang JC, Schaffer CB, Mazur E, Whitesides GM (2003) Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser. Adv Mater 15(1):62– 65CrossRefGoogle Scholar
  15. 15.
    Kim TN, Campbell K, Groisman A, Kleinfeld D, Schaffer CB (2005) Femtosecond laser-drilled capillary integrated into a microfluidic device. Appl Phys Lett 86:201106-1–201106-3Google Scholar
  16. 16.
    Gomez D, Goenaga I, Lizuain I, Ozaita M (2005) Femtosecond laser ablation for microfluidics. Optical Eng 44(5):051105-1–051105-8Google Scholar
  17. 17.
    Day D, Gu M (2005) Microchannel fabrication in PMMA based on localized heating using high-repetition rate femtosecond pulses. Proc SPIE 6037:24–31Google Scholar
  18. 18.
    Klank H, Kutter JP, Geschke O (2002) CO2 laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab On A Chip 2(4):242–247CrossRefGoogle Scholar
  19. 19.
    Snakenborg D, Klank H, Kutter JP (2004) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14:182–189CrossRefGoogle Scholar
  20. 20.
    Klank H, Kutter JP, Geschke O (2002) CO2 laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab On A Chip 2(4):242–247CrossRefGoogle Scholar
  21. 21.
    Jensen MF, McCormack JE, Helbo B, Christensen LH, Christensen TR, Geschke O (2004) Rapid prototyping of polymer microsystems via excimer laser ablation of polymeric moulds. Lab-on-Chip 4:391–395CrossRefGoogle Scholar
  22. 22.
    Liu Y, Rauch CB, Stevens RL, Lenigk R, Yang J, Rhine DB, Grozinski P (2002) DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal Chem 74:3063–3070CrossRefGoogle Scholar
  23. 23.
    Cheng J-Y, Wei CW, Hsu K-H, Young T-H (2004) Direct-write laser micromachining and universal surface modification of PMMA for device development. Sens Actuators B99:186–196Google Scholar
  24. 24.
    Wang S-C, Lee C-Y, Chen H-P (2005) Thermoplastic microchannel fabrication using carbon dioxide laser ablation. J Chromatogr A 1111(2):252–257CrossRefGoogle Scholar
  25. 25.
    Lichtenberg J, Baltes H (2004) Lowcost, chemically resistant microreactors fabricated by laser micromachining in stainless steel. Proc 8th int conf on miniaturized systems for chemistry and life sciences, Sept 26–30, Malmö, Sweden, pp 351–353Google Scholar
  26. 26.
    Elmes S, Pearson J, Moore DF, Rutterford GA, Bell AI, Rivara N, Knowles MHR (2001) Laser machining of micro reservoir pins for gene analysis and high-throughput screening. Proc laser microfabrication conf (ICALEO), Florida, USA, 15–18 Oct 2001, pp 1–10Google Scholar
  27. 27.
    Illy E, Rutherford G, Bell A, Knowles M (2003) Laser processing of microfluidic components and bioMEMS. Proc SPIE 4982:130–137CrossRefGoogle Scholar
  28. 28.
    Müllenborn M, Dirac H, Petersen JW, Bouwstra S (1995) Fast 3D laser micromachining of silicon for micromechanical and microfluidic applications. Proc IEEETransducers 95 - Eurosensors IX, pp 166–169Google Scholar
  29. 29.
    Russek UA, Palmen A, Staub H, Poehler J, Wenzlau C, Otto G, Poggel M, Koeppe A, Kind H (2003) Laser beam welding of thermoplastics. Proc SPIE 4977:458–472CrossRefGoogle Scholar
  30. 30.
    Bauer I, Russek UA, Herfurth HJ, Witte R, Heinemann S, Newaz G, Mian A, Georgiev D, Auner GW (2004) Laser microjoining of dissimilar and biocompatible materials. Proc SPIE 5339:454–464CrossRefGoogle Scholar
  31. 31.
    Witte R, Herfurth HJ, Bauer I (2003) Microjoining of dissimilar materials for optoelectronic and biomedical applications. Proc SPIE 4979:226–233CrossRefGoogle Scholar
  32. 32.
    Gast S, Schuenemann M, Solomon M, Atkin M, Harvey E (2005) Fabrication of multilayered microfluidic 3D polymer packages. Proc IEEE electronic components and technology conference, pp 603–610Google Scholar
  33. 33.
    Velten T, Ruf HH, Barrow D, Aspragathos N, Lazarou P, Jung E, Khan Malek C, Richter M, Kruckow J, Wackerle M (2005) Packaging of bio-MEMS:strategies, technologies and applications. IEEE Trans Adv Packaging 28(4):533–546CrossRefGoogle Scholar
  34. 34.
    Bachmann FG, Russek UA (2002) Laser welding of polymers using high power diode lasers. SPIE Proc 4637:505–518CrossRefGoogle Scholar
  35. 35.
    Sato K, Kurosaki Y, Saito T, Satoh I (2002) Laser welding of plastics transparent to near-infrared radiation. SPIE 4637:528–536CrossRefGoogle Scholar
  36. 36.
    Teubner U, Klotzbuecher T (2004) MICROCLEAR - a novel method for diode laser welding of transparent microstructured polymer chips. Proc ICALEO 2004, laser microfabrication conference, San Francisco, Oct 4–7Google Scholar
  37. 37.
    Lai J, Chen X, Wang X, Yi X, Liu S (2003) Laser bonding and packaging of plastic microfluidic chips. IEEE Proc ICEPT, pp 168–171Google Scholar
  38. 38.
    Hoult AP (2003) Laser welding of polymer micro-fluidic devices using novel diode laser sources. SPIE Proc 5063:308–313CrossRefGoogle Scholar
  39. 39.
    Curtis J, Robinson P, Comley J (2004) The use and advantages of laser sealing in high density assay plates. Society of Biomolecular Sciences (SBS) 10th conference, September 11–15, Orlando, Florida, USAGoogle Scholar
  40. 40.
    Klotzbuecher T, Braune T, Ritzi M, Drese K.-S, Teubner U (2004) Microclear - A novel method for diode laser welding of transparent micro structured polymer chips. Proc 23rd int congress on applications of lasers and electro-optics (ICALEO), San Francisco, Oct 2004Google Scholar
  41. 41.
    Griebel A, Rund S, Schönfeld F, Dörner W, Konrad R, Hardt S (2004) Integrated polymer chip for two-dimensional capillary gel electrophoresis. Lab Chip 4:18–23CrossRefGoogle Scholar
  42. 42.
    Ussing T, Petersen LV, Helbo B, Høslet L (2005) In: Menz W, Dimov S (eds) Micro laser welding of polymer microstructures using low power laser diodes. Proc int conf on multi-material micro manufacture (4M), June 29th June–July 2005, Karlsruhe, Germany, pp 291–293Google Scholar
  43. 43.
    Chen J-W, Zybko JM (2005) Diode laser bonding of planar microfluidic devices, MOEMS, bioMEMS, diagnostic chips, and microarrays. SPIE Proc 5718:92–98CrossRefGoogle Scholar
  44. 44.
    Pfleging W, Baldus O, Bruns M, Baldini A, Bemporad E (2005) Laser-assisted welding of transparent polymers for micro-chemical engineering and life science. Proc SPIE 5713:479–488CrossRefGoogle Scholar
  45. 45.
    Weigl BH, Bardell RL, Cabrera CR (2003) Lab-on-a-chip for drug development. Adv Drug Deliv Rev 55:349–377CrossRefGoogle Scholar
  46. 46.
    Hofman A, Frick T, Geiger M (2004) In: Geiger M, Otto A (ed) Hybrid laser welding of polymers. Proceedings of the laser assisted net shape engineering 4 (LANE)Google Scholar
  47. 47.
    Arnold J, Dasbach U, Ehrfeld W, Hesch K, Löwe H (1995) Combination of excimer laser micromachining and replication processes suited for large scale production (Laser-LIGA). Appl Surf Sci 86:251–258CrossRefGoogle Scholar
  48. 48.
    Klotzbücher T, Braune T, Sigloch S, Hossfeld J, Neumeier M, Bauer H-D, Ehrfeld W (2001) Polymer Microsystems by excimer laser ablation: from rapid prototyping to large number fabrication. Proc SPIE 4274:307–315CrossRefGoogle Scholar
  49. 49.
    Alonso-Amigo MG, Röpke WH (2000) Laser ablation/hot embossing in plastic microfabrication. Proc ICALO 2000 laser microfabrication conf, pp D10-D15Google Scholar
  50. 50.
    Braun A, Zimmer K, Hösselbarth B, Meinhardt J, Bigl F, Mehnert R (1998) Excimer laser micromachining and replication of 3D optical surfaces. Appl Surf Sci 127:911–914CrossRefGoogle Scholar
  51. 51.
    Hanemann T, Pfleging W, Hausselt J, Gar K-HZ (2002) Laser micromachining and light induced reaction injection molding as suitable process sequence for the rapid fabrication of microcomponents. Microsyst Technol 7:209–214CrossRefGoogle Scholar
  52. 52.
    Pfleging W, Hanemann T, Torge M, Bernauer W (2003) Rapid fabrication and replication of metal, ceramic and plastic mould inserts for application in microsystem technologies. Proc I MECH E Part C, J Mech Eng Sci 217:53–63Google Scholar
  53. 53.
    Jensen MF, McCormack JE, Helbo B, Christensen LH, Christensen TR, Geschke O (2004) Rapid prototyping of polymer microsystems via excimer laser ablation of polymeric moulds. Lab-on-Chip 4:391–395CrossRefGoogle Scholar
  54. 54.
    Lawes RA, Holmes AS, Goodall FN (1996) The formation of moulds for 3D microstructures using excimer laser ablation. Microsyst Technol 3:17–19CrossRefGoogle Scholar
  55. 55.
    Yang H, Pan C-T, Chou M-C (2001) Ultra-fine machining tool/molds by LIGA technology. J Micromech Microeng 11:94–99CrossRefGoogle Scholar
  56. 56.
    Ghantasala MK, Hayes JP, Harvey EC, Sood DK (2001) Patterning, electroplating and removal of SU-8 moulds by excimer laser micromachining. J Micromech Microeng 11:133–139CrossRefGoogle Scholar
  57. 57.
    Yang C-R, Hsieh Y-S, Hwang G-Y, Lee Y-D (2004) Photoablation characteristics of novel polyimides synthesized for high-aspect-ratio excimer laser LIGA process. J Micromech Microeng 14:480–489CrossRefGoogle Scholar
  58. 58.
    Ghantasala MK, Barber RC, Moldovan NA, Mancini DC, Harvey EC (2003) Fabrication of 3D high-aspect-ratio microfluidic components using laser machining and LIGA. Proc SPIE 5062:342–346CrossRefGoogle Scholar
  59. 59.
    Cheng Y, Huang T, Chieng C-C (2002) Thick-film lithography using laser write. Microsyst Technol 9:17–23CrossRefGoogle Scholar
  60. 60.
    Gomez D, Goenaga I, Lizuain I, Ozaita M (2005) Femtosecond laser ablation for microfluidics. Optical Eng 44(5):051105-1–051105-8Google Scholar
  61. 61.
    Holmes AS (2002) Laser processes for MEMS manufacture. RIKEN Rev 43:63–69Google Scholar
  62. 62.
    Rizvi NH, Rumsby PT, Gower MC (1999) New developments and applications in the production of 3D micro-structures by laser micro-machining. Proc SPIE 3898:240–249CrossRefGoogle Scholar
  63. 63.
    Holmes AS, Heaton ME, Hong G, Pullen KR, Rumsby PT (2003) Laser profiling of 3-D microblades. Proc SPIE 5063:152–156CrossRefGoogle Scholar
  64. 64.
    Hayden CJ (2003) Three-dimensional excimer laser micromachining using greyscale masks. J Micromech Microeng 13:599–603CrossRefGoogle Scholar
  65. 65.
    Holmes AS (2001) Laser fabrication and assembly processes for MEMS. SPIE 4274:297–306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Département LPMOLaboratoire FEMTO-ST, CNRS-UMR 6174BesançonFrance

Personalised recommendations