Analytical and Bioanalytical Chemistry

, Volume 385, Issue 8, pp 1351–1361 | Cite as

Laser processing for bio-microfluidics applications (part I)

  • Chantal G. Khan MalekEmail author


This paper reviews applications of laser-based techniques to the fabrication of microfluidic devices for biochips and addresses some of the challenges associated with the manufacture of these devices. Special emphasis is placed on the use of lasers for the rapid prototyping and production of biochips in particular for applications in which silicon is not the preferred material base. Part I of this review addresses applications and devices using UV lasers for laser ablation and surface treatment of microchannels, in particular in polymers.


Laser Micromachining Bio-MEMS μTAS Microfluidics Polymers 



This work was performed within the framework of the 4 M Network of Excellence “Multi Material Micro Manufacture: Technology and applications (4 M)” (EC funding FP6-500274-1;


  1. 1.
    Verpoorte E, de Rooij NF (2003) Microfluidics meets MEMS. Proc IEEE 91(6):930–953CrossRefGoogle Scholar
  2. 2.
    Becker H, Gärtner C (2000) Polymer microfabrication methods for microfluidic analytical methods. Electrophoresis 21:12–26CrossRefGoogle Scholar
  3. 3.
    Becker H, Locascio LE (2002) Polymer microfluidic devices. Talenta 56:267–287CrossRefGoogle Scholar
  4. 4.
    Heckele M, Schomburg WK (2004) Review on micro-molding of thermoplastic polymers. J Micromech Microeng 14:R1–R14CrossRefGoogle Scholar
  5. 5.
    Holmes AS (2002) Laser processes for MEMS manufacture. RIKEN Rev 43:63–69Google Scholar
  6. 6.
    Roberts MA, Rossier JS, Bercier P, Girault H (1997) UV laser machined polymer substrates for the development of microdiagnostic systems. Anal Chem 69:2035–2042CrossRefGoogle Scholar
  7. 7.
    Rossier JS, Bercier P, Schwarz A, Loridant S, Girault HH (1999) Topography, crystallinity and wettability of photoablated PET surfaces. Langmuir 15:5173–5178CrossRefGoogle Scholar
  8. 8.
    Bianchi F, Chevelot Y, Mathieu HJ, Girault HH (2001) Photomodification of polymer microchannels induced by static and dynamic excimer ablation: effect on the electroosmotic flow. Anal Chem 73:3845–3853CrossRefGoogle Scholar
  9. 9.
    Rossier JS, Reymond F, Michel PE (2002) Polymer microfluidic chips for electrochemical and biochemical analyses. Rev Electrophor 23:858–867CrossRefGoogle Scholar
  10. 10.
    Rossier JS, Roberts MA, Ferrigno R, Girault HH (1999) Electrochemical detection in polymer microchannels. Anal Chem 71:4294–4299CrossRefGoogle Scholar
  11. 11.
    Schwarz A, Rossier JS, Roulet E, Mermod N, Roberts MA, Girault HH (1998) Micropatterning of biomolecules on polymer substrates. Langmuir 14:5526–5531CrossRefGoogle Scholar
  12. 12.
    Rossier JS, Gokulrangan G, Girault HH, Svojanovsky S, Wilson S (2000) Characterization of protein adsorption in photoablated polymer microchannels. Langmuir 16:8489–8494CrossRefGoogle Scholar
  13. 13.
    Waddell EA, Locascio LE, Kramer GW (2002) UV laser micromachining of polymers for microfluidic applications. J Assoc Lab Automat 7(1):78–82CrossRefGoogle Scholar
  14. 14.
    Johnson TJ, Ross D, Gaitan M, Locascio LE (2001) Laser modification of preformed polymer microchannels: application to reduce band broadening around turns subject to electrokinetic flow. Anal Chem 73:3656–3661CrossRefGoogle Scholar
  15. 15.
    Johnson TJ, Waddell EA, Kramer GW, Locascio LE (2001) Chemical mapping of hot-embossed and UV-laser-ablated microchannels in poly(methyl methacrylate) using carboxylate specific fluorescent probes. J Appl Surf Sci 181:149–159CrossRefGoogle Scholar
  16. 16.
    Henry AC, Waddell EA, Shreiner R, Locascio LE (2002) Control of electroosmotic flow in laser-ablated and chemically modified hot imprinted poly(ethylene terephtalate glycol) microchannels. Electrophoresis 23:791–798CrossRefGoogle Scholar
  17. 17.
    Pugmire DL, Waddell EA, Haasch R, Tarlov MJ, Locascio LE (2002) Surface characterization of laser-ablated polymers used for microfluidics. Anal Chem 74(4):871–878CrossRefGoogle Scholar
  18. 18.
    Suriyage NU, Ghantasala MK, Iovenitti P, Harvey EC (2004) Fabrication, measurement, and modelling of electro-osmotic flow in micromachined polymer microchannels. Proc SPIE 5275:149–160CrossRefGoogle Scholar
  19. 19.
    Wagner F, Hoffmann P (1999) Structure formation in excimer laser ablation of stretched poly(ethylene terephtalate): the influence of scanning ablation. Appl Phys Lett A 69:S841–S844CrossRefGoogle Scholar
  20. 20.
    Thissen H, Hayes JP, Kingshott P, Johnson G, Harvey EC, Griesser HJ (2001) Excimer laser ablation for spatially controlled protein patterns. Proc SPIE 4590:57–65CrossRefGoogle Scholar
  21. 21.
    Thissen H, Hayes JP, Kingshott P, Johnson G, Harvey EC, Griesser HJ (2002) Nanometer thickness laser ablation for spatial control of cell attachment. Smart Mater Struct 11:792–799CrossRefGoogle Scholar
  22. 22.
    Thissen H, Hayes JP, Muir BW, Atkin M, Harvey EC (2002) Spatially controlled surface chemistry by excimer laser ablation of thin films. Proc SPIE 4937:107–114CrossRefGoogle Scholar
  23. 23.
    Wright JP, Mahanivong C, Pham DK, Nicolau DV, Suyama K, Shirai M, Tsunooka M (2001) Computer-controlled laser ablation: a novel tool for biomolecular patterning. SPIE Proc 4590:345–353CrossRefGoogle Scholar
  24. 24.
    Atkin M, Hayes JP, Brack N, Poetter K, Cattrall R, Harvey EC (2002) Disposable biochip fabrication for DNA diagnostics. Proc SPIE 4937:125–135CrossRefGoogle Scholar
  25. 25.
    Thomson D, Hayes JP, Thissen H (2004) Protein patterning in polycarbonate microfluidic channels. Proc SPIE 5275:161–167CrossRefGoogle Scholar
  26. 26.
    Pethig R, Burt JPH, Parton A, Rizvi NH, Talary MS, Tame JA (1999) Development of biofactory-on-a-chip technology using excimer laser micromachining. J Micromech Microeng 8:57–63CrossRefGoogle Scholar
  27. 27.
    Burt JP, Goater AG, Hayden CJ, Tame JA (2002) Laser micromachining of biofactory-on-a-chip devices. SPIE Proc 4637:305–317CrossRefGoogle Scholar
  28. 28.
    Xu N, Lin Y, Hofstadler SA, Matson D, Call CJ, Smith RD (1998) A microfabricated dialysis device for sample cleanup in electrospray ionization mass spectrometry. Anal Chem 70:3553–3556CrossRefGoogle Scholar
  29. 29.
    Lin Y, Matson DW, Kurath DE, Wen J, Xiang F, Bennett WD, Martin PM, Smith RD (1999) Microfluidic devices on polymer substrates for bioanalytical applications. 3rd International Conference on Microreaction Technology “IMRET 3.” April 1999. Springer, New York, pp 451–460Google Scholar
  30. 30.
    Martin PM, Matson DW, Bennett WD, Stewart DC, Lin Y (1999) Laser-micromachined and laminated microfluidic components for miniaturized thermal, chemical and biological systems. Proc SPIE 3680:826–833CrossRefGoogle Scholar
  31. 31.
    Lin Y, Wen J, Fan X, Matson DW, Smith RS (1999) Laser micromachined isoelectric focusing devices on polymer substrate for electrospray mass spectrometry. Proc SPIE 3877:28–35CrossRefGoogle Scholar
  32. 32.
    Gillner A, Bremus-Koebberling EA, Wehner M, Russek UA, Berden T (2001) Laser processing of components for polymer microfluidic and optoelectronic products. Proc SPIE 4274:411–419CrossRefGoogle Scholar
  33. 33.
    Andrews JR, Gerner B (2003) Laser processes for prototyping and production of novel microfluidic structures. Proc SPIE 5345:147–158CrossRefGoogle Scholar
  34. 34.
    Lee HJ, Beattie PD, Seddon BJ, Osborne MD, Girault H (1997) Amperometric ion sensors based on laser-patterned composite polymer membranes. J Electroanal Chem 440:73–82CrossRefGoogle Scholar
  35. 35.
    Matson DW, Martin PM, Bennett WD, Stewart DC, Johnston JW (1997) Laser-micromachined microchannel solvent separator. SPIE Proc 3223:253–259CrossRefGoogle Scholar
  36. 36.
    McNeely MR, Spute MK, Tusneem NA, Oliphant AR (1999) Hydrophobic microfluidics. Proc SPIE 3877:210–220CrossRefGoogle Scholar
  37. 37.
    Sabbert D, Landsiedel J, Bauer H-D, Ehrfeld W (1999) ArF-excimer laser ablation experiments on cycloolefin copolymer (COC). Appl Surf Sci 150:185–189CrossRefGoogle Scholar
  38. 38.
    Gower M, Rizvi N (2000) Applications of laser ablation to microengineering. Proc SPIE 4065:452–460CrossRefGoogle Scholar
  39. 39.
    Killeen K, Yin H, Udiavar S, Brennen R, Juanitas M, Poon E, Sobek D, Barth P, Zimmermann H-P, Moon R, McAllister W, van de Goor T (2001) Chip-MS: a polymeric microfluidic device with integrated mass-spectrometer interface. Proc μTAS 2001, Monterey, CA, 21–25 OctoberGoogle Scholar
  40. 40.
    Kim D-Y, Lee K-C, Lee C (2003) Surface modification of silicon and PTFE by laser surface treatment: improvement of wettability. Proc SPIE 5063:66–70CrossRefGoogle Scholar
  41. 41.
    Kim J, Xu X (2003) Laser-based fabrication of micro-fluidic components and systems. Proc SPIE 4982:73–82CrossRefGoogle Scholar
  42. 42.
    Pfleging W, Boehm J, Finke S, Gaganidze E, Hanemann T, Heidinger R, Litfin K (2003) Direct laser-assisted processing of polymers for microfluidic and micro-optical applications. Proc SPIE 4977:346–356CrossRefGoogle Scholar
  43. 43.
    Yoshida Y (2003) 3D micro channels in laminated resins by UV laser ablation. Proc SPIE 5063:189–192CrossRefGoogle Scholar
  44. 44.
    Yoshida Y, Neichi T, Tahara R, Yamada J, Yamada H, Terada N (2004) Fabricating a three-dimensional channel for micro-fluidic devices by laser ablation. Proceedings of the 8th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 26–30 September, Malmö, pp 1–3Google Scholar
  45. 45.
    Yao L, Liu B, Chen T, Liu S, Zuo T (2005) Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser. Biomed Microdevices 7(3):253–257CrossRefGoogle Scholar
  46. 46.
    Yu H, Balogun O, Li B, Murray TW, Zhang X (2005) Rapid manufacturing of embedded microchannels from a single layered SU-8 and determining the dependence of SU-8 Young’s modulus on exposure dose with a laser acoustic technique. IEEE Proc MEMS 2005:654–657Google Scholar
  47. 47.
    Nakayama Y, Matsuda T (1995) Surface microarchitectural design in biomedical applications: preparation of microporous polymer surfaces by an excimer laser ablation technique. J Biomed Mater Res 29:1295–1301CrossRefGoogle Scholar
  48. 48.
    Khorasani MT, Mirzadeh H, Sammes PG (1996) Laser surface modification of polydimethylsiloxane as a super-hydrophobic material. Radiat Phys Chem 47:881CrossRefGoogle Scholar
  49. 49.
    Khorasani MT, Mirzadeh H, Kermaniu Z (2005) Wettability of porous polydimethylsiloxane surface: morphology study. Appl Surf Sci 242:339–345CrossRefGoogle Scholar
  50. 50.
    Khorasani MT, Mirzadeh H, Sammes PG (1999) Laser surface modification of polymers to improve biocompatibility: HEMA grafted PDMS, in vitro assay - III. Radiat Phys Chem 55:685–689CrossRefGoogle Scholar
  51. 51.
    Duncan AC, Weisbuch F, Rouais F, Lazare S, Baquey Ch (2000) Laser microfabricated polymer surfaces: effect of microtopography on cell growth. Proceedings of the 1st International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, 12–14 October 2000, Lyon, France, pp 542–544Google Scholar
  52. 52.
    Bremus-Köbberling E, Gillner A (2003) Laser structuring and modification of polymer surfaces for chemical and medical micro components. SPIE Proc 5063:217–222CrossRefGoogle Scholar
  53. 53.
    Heitz J, Olbrich M, Mototz S, Romanin C, Svorcik V, Bäuerle D (2005) Surface modification of polymers by UV-irradiation: applications in micro- and biotechnology. Proc SPIE 5958:466–471Google Scholar
  54. 54.
    Kancharla VV, Chen S (2002) Fabrication of biodegradable polymeric devices using laser micromachining. Biomedical Microdevices 4(2):105–109CrossRefGoogle Scholar
  55. 55.
    Chen S, Kancharla VV, Lu Y (2003) Laser-based microscale patterning of biodegradable polymers for biomedical applications. Int J Mater Prod Technol 18(4–5):457–468Google Scholar
  56. 56.
    Aguilar CA, Lu Y, Mao S, Chen S (2005) Direct-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. Biomaterials 26:7642–7649CrossRefGoogle Scholar
  57. 57.
    Niino H, Ding X, Kurosaki R, Nazaraki A, Sato T, Kawaguchi Y (2003) Surface microstructuring of transparent materials by laser-induced backside wet etching using excimer laser. Proc SPIE 5063:193–201CrossRefGoogle Scholar
  58. 58.
    Niino H, Kawaguchi Y, Sato T, Narazaki A, Ding X, Kurosaki R (2004) Surface microfabrication of fused silica glass by UV laser irradiation. Proc SPIE 5339:112–117CrossRefGoogle Scholar
  59. 59.
    Nikumb S, Chen Q, Li C, Reshef H, Zheng HY, Qiu H, Low D (2005) Precision glass machining, drilling and profile cutting by short pulse lasers. Thin Solid Films 477:216–221CrossRefGoogle Scholar
  60. 60.
    Karnakis DM, Knowles MR, Alty KT, Schlaf M, Snelling HV (2005) Comparison of glass processing using high-repetition femtosecond (800 nm) and UV (255 nm) nanosecond pulsed lasers. SPIE Proc 5718:216–227CrossRefGoogle Scholar
  61. 61.
    Heljavian H, Fuqua PD, Hansen WW, Janson S (2000) Nanosatellites and MEMS fabrication by laser microprocessing. SPIE Proc 4088:319–326CrossRefGoogle Scholar
  62. 62.
    Brokmann U, Jacquorie M, Takenberg M, Harnish A, Kreuz E-W, Hülsenberg D, Poprawe R (2002) Exposure of photosensitive glasses with pulsed UV-laser radiation. Microsyst Technol 8:102–104CrossRefGoogle Scholar
  63. 63.
    Kim J, Berberoglu H, Xu X (2003) Fabrication of microstructures in Foturan using excimer and femtosecond lasers. SPIE Proc 4977:324–334CrossRefGoogle Scholar
  64. 64.
    Kim J, Uppuluri SM, Xu X (2004) Replication of microstructures in polymers using laser-fabricated glass-ceramic stamps. SPIE Proc 5339:1–8CrossRefGoogle Scholar
  65. 65.
    Kim J, Uppuluri SM, Xu X (2004) Replication of microstructures in polymers using laser-fabricated glass-ceramic stamps. SPIE Proc 5339:1–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Département LPMOLaboratoire FEMTO-ST, CNRS-UMR 6174Besançon CedexFrance

Personalised recommendations