Advertisement

Analytical and Bioanalytical Chemistry

, Volume 386, Issue 4, pp 973–985 | Cite as

Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry

  • M. Silvia Díaz-Cruz
  • Damià Barceló
Review

Abstract

Antimicrobials are used in large quantities in human and veterinary medicine. Their environmental occurrence is of particular concern due to the potential spread and maintenance of bacterial resistance. After intake by the organisms, the unchanged drug and its metabolized forms are excreted and enter wastewater treatment plants where they are mostly incompletely eliminated, and are therefore eventually released into the aquatic environment. The reliable detection of several antimicrobials in different environmental aqueous compartments is the result of great improvements achieved in analytical chemistry. This article provides an overview of the more outstanding analytical methods based on liquid chromatography tandem mass spectrometry, developed and applied to determine antimicrobial residues and metabolites present in surface, waste, and ground waters.

Keywords

Antimicrobials Pharmaceuticals Solid-phase extraction Liquid chromatography tandem mass spectrometry Water analysis 

Notes

Acknowledgements

This work has been funded by the EU Framework VI Programme (Project NOMIRACLE, Co.No: 003956-2), and by the Spanish Ministry of Science and Technology (Project EVITA, CTM2004-06265-CO3-01/TECNO). M.S. Díaz-Cruz acknowledges her Ramon y Cajal contract from the Spanish Ministry of Science and Technology.

References

  1. 1.
    Halling-Sorensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhoft HC, Jorgensen SE (1998) Chemosphere 36:357–393PubMedCrossRefGoogle Scholar
  2. 2.
    Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Appl Environ Microbiol 67:1494–1502PubMedCrossRefGoogle Scholar
  3. 3.
    Guardabassi L, Petersen A, Olsen JE, Dalsgaard A (1998) Appl Environ Microbiol 64:3499–3508PubMedGoogle Scholar
  4. 4.
    Goñi-Urriza M, Capdepuy M, Arpin C, Raymond N, Caumette P, Quentin P (2000) Appl Environ Microbiol 66:125–132PubMedCrossRefGoogle Scholar
  5. 5.
    Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJF (2002) J Chromatogr A 952:11–120CrossRefGoogle Scholar
  6. 6.
    Wollenberger L, Halling-Sorensen B, Kusk KO (2000) Chemosphere 40:723–730PubMedCrossRefGoogle Scholar
  7. 7.
    Kay P, Blackwell PA, Boxall ABA (2005) Chemosphere 59:951–959PubMedCrossRefGoogle Scholar
  8. 8.
    Capone DG, Weston DP, Miller J, Shoemaker C (1996) 145:55–75Google Scholar
  9. 9.
    Baticados MCL, Paclibare JO (1992) The use of chemoterapheutic agents in aquaculture in the Philippines. In: Shariff M, Subasinghe RP, Arthur JP (eds) Diseases in Asian aquaculture I, Manila, Philippines. Fish Health Section, Asian Fishery Society, pp 531–546Google Scholar
  10. 10.
    Kümerer K (2001) Chemosphere 45:957–969CrossRefGoogle Scholar
  11. 11.
    Mellon M, Benbrook C, Benbrook KL (2001) - http://www.ucsusa.org/publications
  12. 12.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211PubMedCrossRefGoogle Scholar
  13. 13.
    Yang S, Carlson KH (2004) J Chromatogr A 1038:141–155PubMedCrossRefGoogle Scholar
  14. 14.
    Díaz-Cruz MS, Barceló D (2005) Trends Anal Chem 24:645–657CrossRefGoogle Scholar
  15. 15.
    Petrovic M, Hernando MD, Díaz-Cruz MS, Barceló D (2005) J Chromatogr A 1067:1–14PubMedCrossRefGoogle Scholar
  16. 16.
    Oka H, Matsumoto H (2000) J Chromatogr A 882:109–133PubMedCrossRefGoogle Scholar
  17. 17.
    Thiele-Bruhn S (2003) J Plant Nutr Soil Sci 166:145–167CrossRefGoogle Scholar
  18. 18.
    Berger K, Petersen B, Büning-Pfaue H (1986) Arch Lebensmittelhyg 37:85–108Google Scholar
  19. 19.
    Vree TB, Hekster YA (1985) Pharmacokinetics of sulfonamides revisited, vol 34. Carger, Basel, New YorkGoogle Scholar
  20. 20.
    Gobel A, McArdell CS, Suter MJS, Giger W (2004) Anal Chem 76:4756–4764PubMedCrossRefGoogle Scholar
  21. 21.
    Hilton MJ, Thomas KV (2003) J Chromatogr A 1015:129–141PubMedCrossRefGoogle Scholar
  22. 22.
    Hirsch R, Ternes TA, Haberer K, Kratz KL (1999) Sci Tot Environ 225:109–118CrossRefGoogle Scholar
  23. 23.
    Halling-Sorensen B, Sengelov G, Tjornelund J (2002) Arch Environ Contam Toxicol 42:263–271PubMedCrossRefGoogle Scholar
  24. 24.
    Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Environ Sci Technol 40:357–363PubMedCrossRefGoogle Scholar
  25. 25.
    Ternes T, Bonerz M, Schmidt T (2001) J Chromatogr A 938:175–185PubMedCrossRefGoogle Scholar
  26. 26.
    Giger W, Alder AC, Golet EM, Kohler HPE, McArdell CS, Molnar E, Siegrist H, Suter MJF (2003) Environ Anal CHIMIA 57:485–491Google Scholar
  27. 27.
    Daughton CG, Ternes TA (1999) Environ Health Perspect 107:907–938PubMedCrossRefGoogle Scholar
  28. 28.
    Yang S, Cha JM, Carlson KH (2005) J Chromatogr A 1097:40–53PubMedCrossRefGoogle Scholar
  29. 29.
    Golet EM, Xifra I, Siegrist H, Alder AC, Giger W (2003) Environ Sci Technol 37:3243–3249PubMedCrossRefGoogle Scholar
  30. 30.
    Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) J Hazard Mat 122:195–204CrossRefGoogle Scholar
  31. 31.
    Tolls J (2001) Environ Sci Technol 35:3397–3406PubMedCrossRefGoogle Scholar
  32. 32.
    Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes TA (2004) Water Res 38:2918–2926PubMedCrossRefGoogle Scholar
  33. 33.
    Miao XS, Bishay F, Chen M, Metcalfe CD (2004) Environ Sci Technol 38:3533–3541PubMedCrossRefGoogle Scholar
  34. 34.
    Wiegel S, Aulinger A, Brockmeyer R, Harás H, Löffler J, Reincke H, Schmidt R, Stachel B, von Tümpling W, Wanke A (2004) Chemosphere 57:107–126PubMedCrossRefGoogle Scholar
  35. 35.
    Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV (2005) Environ Sci Technol 39:3421–3429PubMedCrossRefGoogle Scholar
  36. 36.
    Löffler D, Ternes TA (2003) 1000:583–588Google Scholar
  37. 37.
    Pozo, OJ, Guerrero C, Sancho JV, Ibáñez M, Pitarch E, Hogendoorn E, Hernández F (2006) J Chromatogr A 1103:83–93PubMedCrossRefGoogle Scholar
  38. 38.
    Cha JM, Yang S, Carlson KH (2005) J Chromatogr A 1065:187–198PubMedCrossRefGoogle Scholar
  39. 39.
    Ternes T (2001) Trends Anal Chem 20:419–434CrossRefGoogle Scholar
  40. 40.
    Yang S, Cha JM, Carlson KH (2004) Rapid Commun Mass Spectrom 18:2131–2145PubMedCrossRefGoogle Scholar
  41. 41.
    Jacobsen MA, Halling-Sorensen B, Ingerslev SH, Hansen J (2004) J Chromatogr A 1038:157–170PubMedCrossRefGoogle Scholar
  42. 42.
    Naidong W, Roets E, Busson R, Hoogmartens J (1990) J Pharm Biomed Anal 8:881–889CrossRefGoogle Scholar
  43. 43.
    Bryan PD, Hawkins KR, Stewart JT, Capomacchia AC (1992) Biomed Chromatogr 6:305–310PubMedCrossRefGoogle Scholar
  44. 44.
    Hamscher G, Sczesny S, Hoper H, Nau H (2002) Anal Chem 74:1509–1518PubMedCrossRefGoogle Scholar
  45. 45.
    Soeborg T, Ingerslev F, Halling-Sorensen B (2004) Chemosphere 57:1551–1524CrossRefGoogle Scholar
  46. 46.
    Hartig C, Store T, Jekel M (1999) J Chromatogr A 854:163–173PubMedCrossRefGoogle Scholar
  47. 47.
    Zhou S, Hamburger M (1995) Rapid Commun Mass Spectrom 9:1516–1521CrossRefGoogle Scholar
  48. 48.
    Zhou S, Hamburger M (1996) J Chromatogr A 755:189–204CrossRefGoogle Scholar
  49. 49.
    Hager JW (2004) Anal Bioanal Chem 378:845–850PubMedCrossRefGoogle Scholar
  50. 50.
    Ibáñez M, Sancho JV, Pozo OJ, Niessen W, Hernández F (2005) Rapid Commun Mass Spectrom 19:169–178PubMedCrossRefGoogle Scholar
  51. 51.
    Stolker AAM, Niesing W, Fuchs W, Vreeken RJ, Niessen WMA, Brinkman UATH (2004) Anal Bioanal Chem 378:1754–1761PubMedCrossRefGoogle Scholar
  52. 52.
    Hager JW, Le Blanc JCY (2003) J Chromatogr A 1020:3–9PubMedCrossRefGoogle Scholar
  53. 53.
    Hager JW (2002) Rapid Commun Mass Spectrom 16:512–526CrossRefGoogle Scholar
  54. 54.
    Raffaelli A, Saba A (2003) Mass Spectrom Rev 22:318–331PubMedCrossRefGoogle Scholar
  55. 55.
    Hanold KA, Fisher SM, Cormia PH, Miller E, Syage JA (2004) Anal Chem 76:2842–2851PubMedCrossRefGoogle Scholar
  56. 56.
    Takino M, Daishima S, Nakahara (2003) J Chromatogr A 1011:67–75PubMedCrossRefGoogle Scholar
  57. 57.
    Hirsch R, Ternes TA, Haberer K, Mehlich A, Ballwanz F, Kratz KL (1998) J Chromatogr A 815:213–223PubMedCrossRefGoogle Scholar
  58. 58.
    Miao XS, Metcalfe CD (2003) J Mass Spectrom 38:27–34PubMedCrossRefGoogle Scholar
  59. 59.
    Kamel AM, Fonda HG, Brown PR, Munson B (2002) J Am Soc Mass Spectrom 13:543–557PubMedCrossRefGoogle Scholar
  60. 60.
    Zhu J, Show DD, Cassada DA, Monson SJ, Spalding RF (2001) J Chromatogr A 928:177–186PubMedCrossRefGoogle Scholar
  61. 61.
    Halling-Sorensen B, Lykkeberg A, Ingerslev F, Blackwell P, Tjornelund J (2003) Chemosphere 50:1331–1342PubMedCrossRefGoogle Scholar
  62. 62.
    Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) J Chromatogr A 938:199–210PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Environmental ChemistryIIQAB-CSICBarcelonaSpain

Personalised recommendations