Analytical and Bioanalytical Chemistry

, Volume 385, Issue 3, pp 568–585 | Cite as

The concept of constant emission yield in GDOES

Review

Abstract

This review paper describes the evolution of the quantification procedure for compositional depth profiling (CDP) in glow discharge optical emission spectrometry (GD-OES), based on the constant emission yield concept. The concept of emission yield (EY) is defined and ways of measuring it experimentally are discussed. The history of the development of quantitative CDP is reviewed, which shows that all of the different approaches depend on the assumption that the EY is essentially a matrix-independent quantity. Particular emphasis is placed on the dependence of the EY on the plasma parameters of current, voltage, power and pressure. In short, impedance changes (current voltage) can significantly affect the emission yield and should either be corrected mathematically or the impedance should be kept constant by pressure regulation in order to obtain reliable results from GDOES CDP. On the other hand, the effect of varying the pressure on the emission yield can be considered to be minor within the limits of practical operating conditions for most CDP applications. It is worth, however, bearing in mind that varying the discharge pressure has a significant effect on the plasma processes, and does affect the emission yield when these variations are large. The experimental results obtained for the emission yield are related to the results from theoretical model calculations published on the subject.

Keywords

Glow discharge optical emission spectroscopy Emission yield Compositional depth profiling 

Notes

Acknowledgements

The idea for writing this review article originated during the Richard ‘Dick’ Payling memorial session at the Winter Plasma Conference at Budapest, Hungary in Jan 2005. Both Arne Bengtson and Thomas Nelis owe a lot of their still limited understanding of the “emission yield” to the numerous discussions with Dick.

The authors thankfully acknowledge the support of Ph. Belenguer, CPAT Toulouse, France, when writing this review article. By patiently answering many of our questions, he has improved the level of our knowledge of basic plasma processes.

References

  1. 1.
    Grove WR (1852) Philos Trans R Soc 142:87CrossRefGoogle Scholar
  2. 2.
    Paschen F (1916) Ann Phys 50:901CrossRefGoogle Scholar
  3. 3.
    Chapman B (1942) Glow discharge processes. Wiley, New YorkGoogle Scholar
  4. 4.
    Marcus RK (1993) Glow discharge spectroscopies. Plenum, New YorkGoogle Scholar
  5. 5.
    Markus RK, Broekaert JAC (2003) Glow discharge plasmas in analytical spectroscopy. Wiley, Chichester, UKGoogle Scholar
  6. 6.
    Bings NH, Bogaerts A, Broekaert JAC (2004) Anal Chem 76:3313–3336CrossRefPubMedGoogle Scholar
  7. 7.
    Grimm W (1967) Natur Wiss 54:586CrossRefGoogle Scholar
  8. 8.
    Nelis Th, Pallosi J (2006) GDOES and MS as tool for surface and interface analysis. Appl Spectrosc Rev (in press)Google Scholar
  9. 9.
    Bogearts A, Gijbels R (1998) Modelling of argon direct current glow discharges and comparison with experiment: how good is the agreement? J Anal Atom Spectrom 13:945–953CrossRefGoogle Scholar
  10. 10.
    Bogaerts A, Gijbels R (1998) Comprehensive description of a Grimm-type glow discharge source used for optical emission spectrometry: a mathematical simulation. Spectrochim Acta B 53:437–462CrossRefGoogle Scholar
  11. 11.
    Gamez G, Huang M, Lehn SA, Hiiftje GM (2003) Laser-scattering instrument for fundamental studies on a glow discharge. J Anal Atom Spectrom 18:680–684CrossRefGoogle Scholar
  12. 12.
    Winchester MR, Payling R (2004) Spectrochim Acta B 59:607–666CrossRefGoogle Scholar
  13. 13.
    Bogaerts A, Gijbels R (1999) Monte Carlo model for the argon ions and fast argon atoms in a radio-frquency discharge. IEEE T Plasma Sci 27(5):1406–1415CrossRefGoogle Scholar
  14. 14.
    Belenguer Ph, Guillot Ph, Therese L (2003) Electrical characterization of radiofrequency glow discharge used for optical emission spectroscopy. Surf Interf Anal 35:604–610CrossRefGoogle Scholar
  15. 15.
    Nelis Th, Payling R (2004) A guidebook to glow discharge optical emission spectroscopy. RSC, CambridgeGoogle Scholar
  16. 16.
    Payling R (1997) In: Payling R, Jones DJ, Bengtson A (eds) Glow discharge optical emission spectroscopy. Wiley, Chichester, UK, Chap. 8.6Google Scholar
  17. 17.
    Bogaerts A, Gijbels R, Carman RJ (1998) Collisional-radiative model for the sputtered copper atoms and ions in a direct current argon glow discharge. Spectrochim Acta B 53:1679–1703CrossRefGoogle Scholar
  18. 18.
    Weiss Z (1997) J Anal Atom Spectrom 12:159–164CrossRefGoogle Scholar
  19. 19.
    Nelis Th, Aeberhard M, Hohl M, Rohr L, Michler J (2006) Characterisation of a pulsed rf-glow discharge in view of its use in OES. J Anal Atom Spectrom 21:1–14CrossRefGoogle Scholar
  20. 20.
    Nobory Y (1994) Rigaku Inc. Japanese patent. No.JP6043100Google Scholar
  21. 21.
    Hoffmann V, Kurt R, Kämmer K, Thielsch R, Wirth Th, Beck U (1999) Interference phenomena at transparent layers in glow discharge optical emission spectrometry. Appl Spectrosc 53(8):987–990CrossRefGoogle Scholar
  22. 22.
    Kimura S, Mitsui Y (2001) Effect of optical interferences on BPSG profiles obtained with a GDOES. Appl Spectrosc 55(3):292–297CrossRefGoogle Scholar
  23. 23.
    Wilken L, Hoffmann V, Wetzig K (2003) J Anal Atom Spectrom 18:1141CrossRefGoogle Scholar
  24. 24.
    Berneron R, Charbonier JC (1981) Surface analysis by glow discharge. Surf Interf Anal 3(3):134–141CrossRefGoogle Scholar
  25. 25.
    Takadoum J, Pivin JC, Pons-Corbeau J, Berneron R, Charbonier JC (1984) Comparative study of ion implantation profiles in metals. Surf Interf Anal 6(4):174–183CrossRefGoogle Scholar
  26. 26.
    Pons-Corbeau J, Cazet JP, Moreau JP, Berneron R, Charbonnier JC (1986) Quantitative surface analysis by glow discharge optical spectrometry. Surf Interf Anal 9:21–25CrossRefGoogle Scholar
  27. 27.
    Pons-Corbeau J (1985) Study of emission and sputtering yields in some alloys and oxide by glow discharge optical spectrometry: quantification of analysis. Surf Interf Anal 7(4):160–176Google Scholar
  28. 28.
    Nelis T, Aeberhard M, Payling R, Michler J, Chapon P (2004) J Anal Atom Spectrom 19:1354–1360CrossRefGoogle Scholar
  29. 29.
    Suzuki K, Nishizaka K, Ohtsubo T (1984) T Iron Steel Inst Jpn 24:B–259Google Scholar
  30. 30.
    Suzuki M, Kojima R, Suzuki K, Nishizaka K, Ohtsubo T (1985) T Iron Steel Inst Jpn 25:B–220Google Scholar
  31. 31.
    Payling R (1997) In: Payling R, Jones DJ, Bengtson A (eds) Glow discharge optical emission spectroscopy. Wiley, Chichester, UKGoogle Scholar
  32. 32.
    Nelis T, Payling R (2004) Glow discharge optical emission spectroscopy: a practical guide. RSC, CambridgeGoogle Scholar
  33. 33.
    Bengtson A (1985) Spectrochim Acta Part B 40:631CrossRefGoogle Scholar
  34. 34.
    Bengtson A, Eklund A, Lundholm M, Saric A (1990) J Anal Atom Spectrom 5:563CrossRefGoogle Scholar
  35. 35.
    Payling R, Jones DG, Gower SA (1993) Quantitative analysis with dc and rf glow discharge spectrometry. Surf Interf Anal 20:939–966Google Scholar
  36. 36.
    Payling R, Jones DG (1993) Fundamental parameters in quantitative depth profiling and bulk analysis with glow discharge spectrometry. Surf Interf Anal 20:787–793CrossRefGoogle Scholar
  37. 37.
    Bengtson A, Danielsson L (1985) Thin Solid Films 123:231CrossRefGoogle Scholar
  38. 38.
    Vegiotti JP (1997) Engineering thesis. Conservatoire National des Arts et Metiers, Paris, p 49Google Scholar
  39. 39.
    Payling R, Jones DG, Gower SA (1995) In search of the ultimate experiment for QDP in GDOES part I. Surf Interf Anal 23:1–11CrossRefGoogle Scholar
  40. 40.
    Jones DG, Payling R, Gower SA, Boge EM (1993) Analysis of pigmented polymer coatings with rf gdoes. Surf Interf Anal 20:369–373Google Scholar
  41. 41.
    Payling R (1995) In search of the ultimate experiment for quantitative depth profile analysis in glow discharge optical emission spectrometry. Part II: Generalized method. Surf Interf Anal 23:12–21CrossRefGoogle Scholar
  42. 42.
    Bengtson A, Hänström S (1998) Emission yield for CDP-parameters. J Anal Atom Spectrom 13:437–441CrossRefGoogle Scholar
  43. 43.
    Marshall K (1990) J Anal Atom Spectrom 14:923CrossRefGoogle Scholar
  44. 44.
    Payling R, Aeberhard M, Delfoss D (2000) Glow discharge analysis of hard coatings and metallic coatings on steel. In: 12th Int Federation for Heat Treatment and Surface Engineering Congress, 29th Oct–2 Nov 2000, Melbourne, AustraliaGoogle Scholar
  45. 45.
    Payling R, Aeberhard M, Delfoss D (2001) Improved quantitative analysis of hard coatings by radiofrequency glow discharge optical emissio spectrometry (rf-GDOES). J Anal Atom Spectrom 16:50–55CrossRefGoogle Scholar
  46. 46.
    Payling R, Michler J, Aeberhard M (2002) Quantitative analysis of conductive coatings by radiofrequency powered glow discharge optical emission spectrometry: hydrogen, d.c. bias voltage and density corrections. Surf Interf Anal 33:372–477Google Scholar
  47. 47.
    Bogaerts A, Gijbels R (2000) Ar spectrum. Spectrochim Acta Part B 55:263–278CrossRefGoogle Scholar
  48. 48.
    Larkins P, Payling R (2000) Optical emission lines of the elements. Wiley, Chichester, UKGoogle Scholar
  49. 49.
    Therèse L (2005) Thesis. Univ. Toulouse III, France, p 81Google Scholar
  50. 50.
    Nelis Th (1997) In: Payling R, Jones DJ, Bengtson A (eds) glow discharge optical emission spectroscopy. Wiley, Chichester, UKGoogle Scholar
  51. 51.
    Payling R, Brown NV, Gower SA (1994) Correcting for background and inter element effects in glow discharge optical emission spectrometry. J Anal Atom Spectrom 9:363CrossRefGoogle Scholar
  52. 52.
    Bengtson A (2003) CDP organic coating—molecular bands. J Anal Atom Spectrom 18:1066–1068CrossRefGoogle Scholar
  53. 53.
    Fernandez B, Bordel N, Pereiroa R, Sanz-Medel A (2003) Investigations of the effect of hydrogen, nitrogen or oxygen on the in-depth profile analysis by radiofrequency argon glow discharge-optical emission spectrometry. J Anal Atom Spectrom 18:151–156CrossRefGoogle Scholar
  54. 54.
    Boegaerts A, Guernard RD, Smith BW, Wineforder JD, Harrison WW, Gijbels R (1997) Three-dimensional density profiles of argon metastable atoms in a direct current glow discharge: experimental study and comparison with calculations. Spectrochim Acta B 53:219–229CrossRefGoogle Scholar
  55. 55.
    Bogaerts A, Gijbels R, Vlcek J (1998) Modeling of glow discharge optical emission spectrometry: calculation of the argon atomic optical emission spectrum. Spectrochim Acta B 53:1517–1526CrossRefGoogle Scholar
  56. 56.
    Bogaerts A, Gijbels R (1998) Argon and copper optical emission spectra in a Grimm glow discharge source: mathematical simulations and comparison with experiment. J Anal Atom Spectrom 13:721–726CrossRefGoogle Scholar
  57. 57.
    Ferreira NP, Strauss JA, Human HGC (1983) Developments in glow discharge emission spectrometry. Spectrochim Acta 38B:899–911Google Scholar
  58. 58.
    Bogaerts A, Gijbels R (1998) J Anal Atom Spectrom 13:945–953CrossRefGoogle Scholar
  59. 59.
    Aston FW (1907) P Roy Soc Lond A Mat 78:80CrossRefGoogle Scholar
  60. 60.
    Therèse L (2005) Thesis. Univ. Toulouse III, France, p 140 (Fig. 5–54)Google Scholar
  61. 61.
    Therèse L (2005) Thesis. Univ. Toulouse III, France, p 149 (Fig. 5–71)Google Scholar
  62. 62.
    Payling R, Jones DJ (1993) Fundamental parameters in quantitative depth profile analysis with glow discharge spectometry. Surf Interf Anal 20:787–793CrossRefGoogle Scholar
  63. 63.
    Bengston A (1994) Spectrochim Acta 29B:411Google Scholar
  64. 64.
    Bogaerts A, Gijbels R (2000) Behavior of the sputtered copper atoms, ions and excited species in a radio-frequency and direct current glow discharge. Spectrochim Acta B 55:279–297CrossRefGoogle Scholar
  65. 65.
    Therèse L (2005) Thesis. Univ. Toulouse III, France, p 74Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.KIMABStockholmSweden
  2. 2.Swiss Federal Laboratories for Materials Testing and Research (EMPA)ThunSwitzerland
  3. 3.Atout and ProgrèsParisFrance

Personalised recommendations