Analytical and Bioanalytical Chemistry

, Volume 385, Issue 6, pp 985–991 | Cite as

Trace-level determination of pharmaceutical residues by LC-MS/MS in natural and treated waters. A pilot-survey study

  • M. D. Hernando
  • E. Heath
  • M. Petrovic
  • D. Barceló
Special Issue Paper


A pilot-survey study was performed by collecting samples (influent and effluent wastewaters, rivers and tap waters) from different locations in Europe (Spain, Belgium, Germany and Slovenia). A solid-phase extraction (SPE) followed by liquid chromatography–tandem mass spectrometry method was applied for the determination of pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid). Method detection limits and method quantification limits were at the parts-per-trillion level (7.5–75 ng/L). The recovery rates of the SPE from deionized water and effluent wastewater samples spiked at 100- and 1,000-ng/L levels ranged from 87 to 95%. Identification criteria in compliance with the EU regulation for confirmatory methods of organic residues were applied. A detailed study of signal suppression evaluation for analysis of pharmaceutical residues in effluent wastewaters is presented.


Pharmaceuticals Natural water Treated water Liquid chromatography–tandem mass spectrometry 



This study was financially supported by the European Commission Project (P-THREE no. EVK1-CT2002-0116, QUA-NAS—Improving the Infrastructure for Metrology in Chemistry in the Candidate New Member States, 5.OP EU, Competitive and Substainable Growth Programme, GTC1-2002-73003) and the Spanish Ministerio de Educación y Ciencia Project EVITA (CTM2004-06255-CO3-01 and PPQ2002-10945-E). The authors thank Merck for supplying LC columns. M.D.H. acknowledges the research contract (contrato de retorno de investigadores) from the Consejería de Educación y Ciencia de la Junta de Andalucía, Spain. M.P. acknowledges the ICREA contract from the Catalan Institution for Research and Advance Studies, and the Centro Superior de Investigaciones Científicas (CSIC), Barcelona, Spain. The authors also wish to thank R. Chaler and D. Fangul for their kind support with LC-MS/MS analysis.


  1. 1.
    Ternes TA (1998) Water Res 32:3245–3260CrossRefGoogle Scholar
  2. 2.
    Daughton CG, Ternes TA (1999) Environ Health Perspect 107:907–937PubMedCrossRefGoogle Scholar
  3. 3.
    Wilken RD, Ternes TA, Heberer T (2000) Security of public water supplies Kluwer, Dodrecht, p 227Google Scholar
  4. 4.
    Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) J Chromatogr A 938:199–210CrossRefPubMedGoogle Scholar
  5. 5.
    Hirsch R, Ternes TA, Heberer K, Mehlich A, Ballwanz F, Kratz KL (1998) J Chromatogr A 815:213–223CrossRefPubMedGoogle Scholar
  6. 6.
    Heberer T, Dünnbier U, Reilich C, Stan H-J (1997) Fresenius’ Environ Bull 6:438–443Google Scholar
  7. 7.
    Lee H-B, Peart TE, Svoboda ML (2005) J Chromatogr A 1094:122–129CrossRefPubMedGoogle Scholar
  8. 8.
    Ternes TA, Bornez M, Herrmann N, Löffler D, Keller E, Lacida BB, Alder AC (2005) J Chromatogr A 1067:213–223CrossRefPubMedGoogle Scholar
  9. 9.
    Hilton MJ, Thomas KV (2003) J Chromatogr A 1015:129–141CrossRefPubMedGoogle Scholar
  10. 10.
    Metcalfe CD, Koenig BG, Bennie DT, Servos M, Ternes TA, Hirsch R (2003) Environ Toxicol Chem 12:2872–2882CrossRefGoogle Scholar
  11. 11.
    Moeder M, Schrader S, Winkler M, Popp P (2000) J Chromatogr A 873:95–106CrossRefPubMedGoogle Scholar
  12. 12.
    Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E (2005) J Chromatogr A 1092:206–215CrossRefPubMedGoogle Scholar
  13. 13.
    Kim S-C, Carlson K (2005) Trends Anal Chem 24:635–644CrossRefGoogle Scholar
  14. 14.
    Díaz-Cruz MS, Barceló D (2005) Trends Anal Chem 24:645–657CrossRefGoogle Scholar
  15. 15.
    Lin W-C, Chen H-C, Ding W-H (2005) J Chromatogr A 1065:279–285CrossRefPubMedGoogle Scholar
  16. 16.
    Petrovic M, Hernando MD, Díaz-Cruz MS, Barceló D (2005) J Chromatogr A 1067:1–14CrossRefPubMedGoogle Scholar
  17. 17.
    Kosjek T, Heath E, Krbavèiè A (2005) Environ Int 31:679CrossRefPubMedGoogle Scholar
  18. 18.
    González-Barreiro C, Lores M, Casais MC, Cela R (2003) J Chromatogr A 993:29–37CrossRefPubMedGoogle Scholar
  19. 19.
    Miao X-S, Koenig BG, Metcalfe CD (2002) J Chromatogr A 952:139–147CrossRefPubMedGoogle Scholar
  20. 20.
    Miao X-S, Metcalfe CD (2003) J Chromatogr A 998:133–141PubMedCrossRefGoogle Scholar
  21. 21.
    Stolker AAM, Niesing W, Hogendoorn EA, Versteegh JFM, Fuchs R, Brinkman UAT (2004) Anal Bioanal Chem 378:955–963CrossRefPubMedGoogle Scholar
  22. 22.
    Hernando MD, Petrovic M, Fernández-Alba AR, Barceló D (2004) J Chromatogr A 1046:133–140CrossRefPubMedGoogle Scholar
  23. 23.
    Ternes TA, Bornez M, Schimdt T (2001) J Chromatogr A 938:175–185CrossRefGoogle Scholar
  24. 24.
    Tixier C, Singer HP, Oellers S, Muller SR (2003) Environ Sci Technol 6:1061–1068CrossRefGoogle Scholar
  25. 25.
    Lindquist N, Tuhkanen T, Kronberg L (2005) Water Res 39:2219–2228CrossRefPubMedGoogle Scholar
  26. 26.
    Comoretto L, Chiron S (2005) Sci Total Environ 349:201–210CrossRefPubMedGoogle Scholar
  27. 27.
    Wiegel S, Aulinger A, Brockmeyer R, Harms H, Löffler J, Reincke H, Schmidt R, Stachel B, Von Tümpling W, Wanke A (2004) Chemosphere 57:107–126CrossRefPubMedGoogle Scholar
  28. 28.
    Official Journal of the European Communities, 12.8.2002. Commission Decision 2002/657/EC of 12 August, implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of the resultsGoogle Scholar
  29. 29.
    Quintana JB, Reemtsma T (2004) Rapid Commun Mass Spectrom 18:765–744CrossRefGoogle Scholar
  30. 30.
    Marchese S, Perret D, Gentili A, Curini R, Pastori F (2003) Chromatographia 58:263–269Google Scholar
  31. 31.
    Löffler D, Ternes TA (2003) J Chromatogr A 1021:133–144CrossRefPubMedGoogle Scholar
  32. 32.
    Tang L, Kebarle P (1993) Anal Chem 65:3654–3668CrossRefGoogle Scholar
  33. 33.
    Petrovic M, Gonzalez S, Barceló D (2003) Trends Anal Chem 22:685–696CrossRefGoogle Scholar
  34. 34.
    Ternes T Assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water facilities to improve the indirect potable water reuse. Poseidon EU Project Report.
  35. 35.
    Assessment and removal technologies of antibiotics in waste-waters. REMPHARMAWATER EU Project Report.
  36. 36.
    Clara M, Strenn B, Ausserleitner M, Kreuzinger N (2004) Water Sci Technol 50:29–36Google Scholar
  37. 37.
    Tauxe-Wuersch A, De Alencastro LF, Grandjean D, Tarradellas J (2005) Water Res 39:1761–1772CrossRefPubMedGoogle Scholar
  38. 38.
    European Commission Report on pollutants in urban waste water and sewage sludge. Chapter 6: case studies.
  39. 39.
    Winkler M, Lawrence JR, Neu TR (2001) Water Res 35:3197–3205CrossRefPubMedGoogle Scholar
  40. 40.
    Ternes TA (2001) In: Daughton CG, Jones-Lepp T (eds) Pharmaceuticals and personal care products in the environment: scientific and regulatory issues. American Chemical Society, Washington, DC, pp 39–54Google Scholar
  41. 41.
    Kosjek T, Heat E, Krbavèiè A (2005) Environ Int 31:679–685CrossRefPubMedGoogle Scholar
  42. 42.
    Ahrer W, Scherwenk E, Buchberger W (2001) J Chromatogr A 910:69–78CrossRefPubMedGoogle Scholar
  43. 43.
    Heberer T (2002) J Hydrol 266:175–189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. D. Hernando
    • 1
    • 3
  • E. Heath
    • 2
  • M. Petrovic
    • 1
  • D. Barceló
    • 1
  1. 1.Department of Environmental Chemistry, IIQAB-CSICBarcelonaSpain
  2. 2.Department of Environmental SciencesJozef Stefan InstituteLjubljanaSlovenia
  3. 3.Department of Analytical ChemistryUniversity of AlmeriaAlmeriaSpain

Personalised recommendations