Analytical and Bioanalytical Chemistry

, Volume 385, Issue 7, pp 1162–1171 | Cite as

Optimization of an analytical methodology for the determination of alkyl- and methoxy-phenolic compounds by HS-SPME in biomass smoke

  • Francisco J. Conde
  • Ana M. Afonso
  • Venerando González
  • Juan H. Ayala
Special Issue Paper


A sampling and analysis method for the determination of 21 phenolic compounds in smoke samples from biomass combustion has been developed. The smoke is used to make smoked foods, following an artisanal procedure used in some parts of the Canary Islands. The sampling system consists of a Bravo H air sampler, two impingers, each one containing an aqueous solution of sodium hydroxide 0.1 mol L−1, followed by a silica gel trap. The variables optimized to reach the best sampling conditions were volume of absorbent solution and sampling flow. Under the optimum conditions, 100 mL of absorbent solution of NaOH 0.10 mol L−1 and 2 L min−1 for the sampling flow, sampling efficiencies are higher than 80%. Analysis of phenolic compounds was carried out by headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–mass spectrometry (GC-MS). Five different fiber coatings were employed in this study. By means of a central composite design, extraction time, salt concentration, and pH of the solution were optimized: 65-μm carbowax–divinylbenzene, extraction time 90 min, concentration in NaCl of 35% (m/v), and pH 2 yielded the highest response. Detection limits of phenol and their alkyl derivatives, guaiacol and eugenol, are between 1.13 and 4.60 ng mL−1. 3-Methoxyphenol, 2,6-dimethoxyphenol, and vanillin have detection limits considerably higher. Good linearity (R 2≥0.98) was observed for all calibration curves in the established ranges. The reproducibility of the method (RSD, relative standard deviation) was found to oscillate between 7 and 18% (generally close or lower than 10%).


Smoked foods Phenolic compounds Headspace analysis Solid-phase microextraction Central composite design Gas chromatography–mass spectrometry 



This study was supported by the projects: AGL 2002-02149 financed by Dirección General de Investigación del Ministerio de Ciencia y Tecnología (Spain); and CAL02-075-C3-3 financed by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (Spain).


  1. 1.
    Clifford MN (1993) In: Macrae R, Robinson RK, Sadler MJ (eds) Encyclopaedia of food science, food technology and nutrition, vol 6. Academic Press, San Diego, p 4150Google Scholar
  2. 2.
    Simko P (2002) J Chromatogr B 770:3–18CrossRefGoogle Scholar
  3. 3.
    Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1998) Environ Sci Technol 32:13–22CrossRefGoogle Scholar
  4. 4.
    Gulyurtlu I, Karunaratne DGGP, Cabrita I (2003) Fuel 82:215–223CrossRefGoogle Scholar
  5. 5.
    Bhattacharya SC, Albina DO, Khaing AM (2002) Biomass Bioenerg 23:387–395CrossRefGoogle Scholar
  6. 6.
    Simoneit BRT (2002) Appl Geochem 17:129–162CrossRefGoogle Scholar
  7. 7.
    Lemieux PM, Lutes CC, Santoianni DA (2004) Prog Energy Combust Sci 30:1–32CrossRefGoogle Scholar
  8. 8.
    Nolte CG, Schauer JJ, Cass GR, Simoneit BRT (2001) Environ Sci Technol 35:1912–1919CrossRefPubMedGoogle Scholar
  9. 9.
    Simoneit BRT, Rogge WF, Lang Q, Jaffé R (2000) Chemosphere: Global Change Sci 2:107–122CrossRefGoogle Scholar
  10. 10.
    Guillén MD, Manzanos MJ (2002) Food Chem 79:283–292CrossRefGoogle Scholar
  11. 11.
    Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Bioresource Technol 95:309–317CrossRefGoogle Scholar
  12. 12.
    Ogata M, Shin-ya K, Urano S, Endo T (2005) Chem Pharm Bull 53:344–346CrossRefPubMedGoogle Scholar
  13. 13.
    Sérot T, Baron R, Knockaert C, Vallet JL (2004) Food Chem 85:111–120CrossRefGoogle Scholar
  14. 14.
    Guillén MD, Manzanos MJ, Ibargoitia ML (2001) J Agric Food Chem 49:2395–2403CrossRefPubMedGoogle Scholar
  15. 15.
    Kjällstrand J, Ramnäs O, Petersson G (1998) J Chromatogr A 824:205–210CrossRefPubMedGoogle Scholar
  16. 16.
    Kjällstrand J, Ramnäs O, Petersson G (2000) Chemosphere 41:735–741CrossRefPubMedGoogle Scholar
  17. 17.
    Olsson M, Kjällstrand J, Petersson G (2003) J Anal Appl Pyrolysis 67:135–141CrossRefGoogle Scholar
  18. 18.
    Ross AB, Jones JM, Chaiklangmuang S, Pourkashanian M, Williams A, Kubica K, Andersson JT, Kerst M, Danielka P, Bartle KD (2002) Fuel 81:571–582CrossRefGoogle Scholar
  19. 19.
    Zhang Z, Zhang H, Deng Q (2000) Talanta 53:517–523CrossRefGoogle Scholar
  20. 20.
    US EPA TO-8 (September 1986) Compendium methods for determination of toxic organic compounds in ambient air. US EPA-600/4-89-017Google Scholar
  21. 21.
    Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley-VCH, New YorkGoogle Scholar
  22. 22.
    Cho D, Kong S, Oh S (2003) Water Res 37:402–408CrossRefPubMedGoogle Scholar
  23. 23.
    Bicchi C, Drigo S, Rubiolo P (2000) J Chromatogr A 892:469–485CrossRefPubMedGoogle Scholar
  24. 24.
    Baciocchi R, Attinà M, Lombardi G, Boni MR (2001) J Chromatogr A 911:135–141CrossRefPubMedGoogle Scholar
  25. 25.
    Monje M, Privat C, Gastine V, Nepveu F (2002) Anal Chim Acta 458:111–117CrossRefGoogle Scholar
  26. 26.
    Peñalver A, Pocurull E, Borrull F, Marcé RM (2002) J Chromatogr A 953:79–87CrossRefPubMedGoogle Scholar
  27. 27.
    González-Toledo E, Prat MD, Alpendurada MF (2001) J Chromatogr A 923:45–52CrossRefPubMedGoogle Scholar
  28. 28.
    Llompart M, Lourido M, Landín P, García-Jares C, Cela R (2002) J Chromatogr A 963:137–148CrossRefPubMedGoogle Scholar
  29. 29.
    Buchholz KD, Pawliszyn J (1994) Anal Chem 66:160–167CrossRefGoogle Scholar
  30. 30.
    Zhou F, Li X, Zeng Z (2005) Anal Chim Acta 538:63–70CrossRefGoogle Scholar
  31. 31.
    Lord H, Pawliszyn J (2000) J Chromatogr A 885:153–193PubMedCrossRefGoogle Scholar
  32. 32.
    Iinuma Y, Herrmann H (2003) J Chromatogr A 1018:105–115CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Francisco J. Conde
    • 1
  • Ana M. Afonso
    • 1
  • Venerando González
    • 1
  • Juan H. Ayala
    • 1
  1. 1.Department of Analytical Chemistry, Nutrition and Food ScienceUniversity of La Laguna, Campus de AnchietaLa LagunaSpain

Personalised recommendations