Advertisement

Analytical and Bioanalytical Chemistry

, Volume 384, Issue 7–8, pp 1567–1577 | Cite as

Electrochemical properties of silver–copper alloy microelectrodes for use in voltammetric field apparatus

  • Silje M. Skogvold
  • Øyvind MikkelsenEmail author
  • Gabriel Billon
  • Cedric Garnier
  • Ludovic Lesven
  • Jean-Francois Barthe
Original Paper

Abstract

Microelectrodes of silver–copper alloys have been evaluated for use in voltammetric analyses. Increased overpotential towards the hydrogen overvoltage reaction (HER) was found as a function of increased copper content in the silver. A study of oxidizing products by cyclic voltammetry (CV) in NaOH solution showed ten anodic and eight cathodic peaks which are described in the present paper. The behaviour of these alloy electrodes is somewhere between pure silver and pure copper electrodes. Differential pulse anodic stripping voltammetry (DPASV) was used to measure zinc, cadmium and lead in ultrapure water only (18 MΩcm), and good linearity was found for all metals (r 2=0.998) in the range of 0.5 to 5 ppb with a 600- to 1,200-s plating time. It was additionally found that cadmium and lead were better separated on the alloy electrodes compared to pure silver electrodes. Measurements of nickel were carried out on alloy electrodes by use of adsorptive differential pulse cathodic stripping voltammetry (Ad-DPCSV), and good linearity (r 2=1.000) was found in the range from 0.5 to 5 ppb with an adsorption time of 120 s. The alloy electrodes were also found to be sensitive to nitrate, and good linearity (r 2=0.997) was found in the range from 1 mg L−1 to 100 mg L−1 using differential pulse voltammetry (DPV) scanning from −450 mV to −1,500 mV. Addition of nitrate in ultrapure water afforded two different peaks related to the successive reductions of nitrate and nitrite. In ammonium buffer solution (pH 8.6) only one peak resulting from reduction of nitrate was observed. Furthermore, the use of alloy electrodes containing 17% Cu was tested in real samples, by installing it in a voltammetric system for monitoring of zinc and lead in a polluted river, the river Deûle, near the town of Douai in northern France. Results were found to be in agreement with parallel measurements carried out by ICP-MS.

Keywords

Voltammetry Solid electrodes Real samples 

References

  1. 1.
  2. 2.
  3. 3.
    Utgikar VP, Chaudhary N, Koeniger A, Tabak HH, Haines JR, Govind R (2004) Water Res 38:3651–3658CrossRefPubMedGoogle Scholar
  4. 4.
    Ho JW, Ho AW (1997) Environ Toxicol Water Qual 12:245–248CrossRefGoogle Scholar
  5. 5.
    Madoni P, Davoli D, Gorbi G (1994) Bull Environ Contam Toxicol 53:420–425CrossRefPubMedGoogle Scholar
  6. 6.
    Kalvoda R (1990) Electroanalysis 2:341–346CrossRefGoogle Scholar
  7. 7.
    Mikkelsen Ø, Skogvold SM, Schrøder KH (2005) Electroanalysis 17:431–439CrossRefGoogle Scholar
  8. 8.
    El-Hasani SR, Al-Dhaheri SM, El-Maazawi MS, Kamal MM (1999) Water Sci Technol 40:67–74CrossRefGoogle Scholar
  9. 9.
    Bond AM (1999) Anal Chim Acta 400:333–379CrossRefGoogle Scholar
  10. 10.
    Brainina Kh, Henze G, Stojko N, Malakhova N, Faller C (1999) Fresenius J Anal Chem 364:285–295CrossRefGoogle Scholar
  11. 11.
    Diederich HJ, Meyer S, Scholz F (1994) Fresenius J Anal Chem 349:670–675CrossRefGoogle Scholar
  12. 12.
    Tercier ML, Buffle J, Graziottin F (1998) Electroanalysis 10:355–363CrossRefGoogle Scholar
  13. 13.
    Wang J (2005) Electroanalysis 17:1341–1346CrossRefGoogle Scholar
  14. 14.
    Goodwin A, Lawrence AL, Banks CE, Wantz F, Omanovi D, Komorsky-Lovri S, Compton RG (2005) Anal Chim Acta 533:141–145CrossRefGoogle Scholar
  15. 15.
    Achterberg EP, van den Berg CMG, Boussemart M, Davison W (1997) Geochim Cosmochim Acta 61:5233–5253CrossRefGoogle Scholar
  16. 16.
    Pižeta I, Billon G, Omanovi D, Cuculi V, Garnier C, Fischer JC (2005) Anal Chim Acta (paper available online)Google Scholar
  17. 17.
    Luther III GW, Wilk Z, Ryans RA, Meyerson AL (1986) Mar Pollut Bull 17:535–542CrossRefGoogle Scholar
  18. 18.
    Mikkelsen Ø, Skogvold SM, Schrøder KH (2005) Electroanalysis 17:431–439CrossRefGoogle Scholar
  19. 19.
    Borgo CA, Ferrari RT, Colpini LMS, Costa CMM, Baesso ML, Bento AC (1999) Anal Chim Acta 385:103–109CrossRefGoogle Scholar
  20. 20.
    Bonfil Y, Brand M, Kirowa-Eisner E (1999) Anal Chim Acta 387:85–95CrossRefGoogle Scholar
  21. 21.
    Cavalleri O, Bittner AM, Kind H, Kern K (1999) Z Phys Chem 208:107–136Google Scholar
  22. 22.
    Wang J, Lu JM, Hocevar SB, Farias PAM, Ogorevc B (2000) Anal Chem 72:3218–3222CrossRefPubMedGoogle Scholar
  23. 23.
    Cordon F, Ramírez SA, Gordillo GJ (2002) J Electroanal Chem 534:131–141CrossRefGoogle Scholar
  24. 24.
    Ensafi AA, Zarei K (2000) Talanta 52:435–440CrossRefGoogle Scholar
  25. 25.
    Hutton EA, van Elteren JT, Ogorevc B, Smyth MR (2004) Talanta 63:849–855CrossRefGoogle Scholar
  26. 26.
    Wang J, Lu J (2000) Electrochem Commun 2:390–393CrossRefGoogle Scholar
  27. 27.
    Kefala G, Economou A, Voulgaropoulos A, Sofoniou M (2003) Talanta 61:603–610CrossRefGoogle Scholar
  28. 28.
    Chi Q, Göpel W, Ruzgas T, Gorton L, Heiduschka P (1997) Electroanalysis 9:357–365CrossRefGoogle Scholar
  29. 29.
    Brainina KZ, Kubysheva IV, Miroshnikova EG, Parshakov SI, Maksimov YG, Volkonsky AE (2001) Field Anal Chem Technol 5:260–271CrossRefGoogle Scholar
  30. 30.
    Mikkelsen Ø, Schrøder KH (2002) Anal Lett 33:3253–3269Google Scholar
  31. 31.
    Mikkelsen Ø, Schrøder KH, Aarhaug TA (2001) Collect Czech Chem Commun 66:465–472CrossRefGoogle Scholar
  32. 32.
    Mikkelsen Ø, Schrøder KH (2002) Anal Chim Acta 458:249–256CrossRefGoogle Scholar
  33. 33.
    Pižeta I, Billon G, Fischer JC, Wartel M (2003) Electroanalysis 15:1389–1396CrossRefGoogle Scholar
  34. 34.
    Tercier M-L, Parthasarathy N, Bufle J (1995) Electroanalysis 7:55–63CrossRefGoogle Scholar
  35. 35.
    Jiang JH, Wu BL, Cha CS, Zhai RS (1998) Electroanalysis 10:343–346CrossRefGoogle Scholar
  36. 36.
    Matysik FM, Gläser P, Werner G (1993) Anal Bioanal Chem 349:646–649Google Scholar
  37. 37.
    Norouzi P, Ganjali MR, Sepehri A, Ghorbani M (2005) Sens Actuators B 110:239–245CrossRefGoogle Scholar
  38. 38.
    Baldo MA, Bragato C, Mazzocchin GA, Daniele S (1998) Electrochim Acta 43:3413–3422CrossRefGoogle Scholar
  39. 39.
    Billon G, van den Berg CMG (2004) Electroanalysis 16:1583–1591CrossRefGoogle Scholar
  40. 40.
    Wieckowski A (1999) Interfacial electrochemistry, theory, experiments, and applications. Marcel Dekker, BaselGoogle Scholar
  41. 41.
    Hayden BE, Hodgson A (1999) J Phys Condens Matter 11:8397–8415CrossRefGoogle Scholar
  42. 42.
    Abd El Rehim SS, Hassan HH, Ibrahim MAM, Amin MA (1998) Monatsh Chem 129:1103–1117Google Scholar
  43. 43.
    Assaf FH, Zaky AM, Abd El-Rehim SS (2002) Appl Surf Sci 187:18–27CrossRefGoogle Scholar
  44. 44.
    Zaky AM (2001) Br Corros J 36:59–64CrossRefGoogle Scholar
  45. 45.
    Hansen M, Anderko K (1958) Constitution of binary alloys 18. McGraw Hill, New YorkGoogle Scholar
  46. 46.
    Ciszkowska M, Stojek Z (1999) J Electroanal Chem 466:129–143CrossRefGoogle Scholar
  47. 47.
    Colombo C, van den Berg CMG (1997) Anal Chim Acta 337:29–40CrossRefGoogle Scholar
  48. 48.
    Bodini ME, Sawyer D (1977) Anal Chem 49:485–489CrossRefPubMedGoogle Scholar
  49. 49.
    Davenport RJ, Johnson DC (1973) Anal Chem 45:1979–1980CrossRefGoogle Scholar
  50. 50.
    Genders JD, Hartsough D, Hobbs DT (1996) J Appl Electrochem 26:1–9CrossRefGoogle Scholar
  51. 51.
    Cattarin S (1992) J Appl Electrochem 22:1077–1081CrossRefGoogle Scholar
  52. 52.
    Fedurco M, Kedzierzawski P, Augustynski J (1999) J Electrochem 146:2569–2572CrossRefGoogle Scholar
  53. 53.
    Fogg AG, Scullion SP, Edmonds TE, Birch BJ (1991) Analyst 116:573–579CrossRefGoogle Scholar
  54. 54.
    Shibata M, Yoshida K, Furuya N (1998) J Electrochem Soc 145:2348–2353Google Scholar
  55. 55.
    Bouamrane F, Tadjeddine A, Butler JE, Tenne R, Levy-Clement C (1996) J Electroanal Chem 405:95–99CrossRefGoogle Scholar
  56. 56.
    Tenne R, Patel K, Hashimoto K, Fujishima A (1993) J Electroanal 347:409–415CrossRefGoogle Scholar
  57. 57.
    Pletcher D, Poorabedi Z (1979) Electrochim Acta 24:1253–1256CrossRefGoogle Scholar
  58. 58.
    Albery WJ, Hagged BGD, Jones Ch.P, Pritchard MJ, Svanberg LR (1985) J Electroanal Chem 188:257–263CrossRefGoogle Scholar
  59. 59.
    Fogg AG, Scullion P, Edmonds TE (1991) Analyst 116:573–579CrossRefGoogle Scholar
  60. 60.
    Davenport RJ, Johnson DC (1974) Anal Chem 46:1971–1978CrossRefPubMedGoogle Scholar
  61. 61.
    Kvarackheliya PK, Machavariani T.Sh (1982) Coll Czechoslovak Chem Commun 47:2615–2619Google Scholar
  62. 62.
    Krista J, Kopanica M, Novotný L (2000) Electroanalysis 12:199–204CrossRefGoogle Scholar
  63. 63.
    Davis J, Moorcroft MJ, Wilkins SJ, Compton RG, Cardosi MF (2000) Analyst 125:737–741CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Silje M. Skogvold
    • 1
  • Øyvind Mikkelsen
    • 1
    Email author
  • Gabriel Billon
    • 2
  • Cedric Garnier
    • 2
  • Ludovic Lesven
    • 2
  • Jean-Francois Barthe
    • 2
  1. 1.Norwegian University of Science and Technology Department of ChemistryTrondheimNorway
  2. 2.University of Sciences and Technologies of Lille, Laboratory of Analytical and Marine Chemistry (UMR8013)Villeneuve d’AscqFrance

Personalised recommendations