Advertisement

Analytical and Bioanalytical Chemistry

, Volume 383, Issue 2, pp 224–234 | Cite as

Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats

  • Tohru Tarohda
  • Yasushi Ishida
  • Keiichi Kawai
  • Masayoshi Yamamoto
  • Ryohei AmanoEmail author
Original Paper

Abstract

Time courses of changes in manganese, iron, copper, and zinc concentrations were examined in regions of the brain of a 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson’s disease using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations were simultaneously determined in brain section at the level of the substantia nigra 1, 3, 7, 10, 14, and 21 days after the 6-OHDA treatment and compared with those of control rats. The distributions of these elements were obtained for 18 regions of the sagittal section (1-mm thick). The ICP-MS results indicated that Mn, Fe, Cu, and Zn levels of the 6-OHDA-induced parkinsonian brain were observed to increase in all regions that lay along the dopaminergic pathway. In the substantia nigra, the increase in Mn level occurred rapidly from 3 to 7 days and preceded those in the other elements, reaching a plateau in the 6-OHDA brain. Iron and Zn levels increased gradually until 7 days and then increased rapidly from 7 to 10 days. The increase in the copper level was slightly delayed. In other regions, such as the globus pallidus, putamen, and amygdala, the levels of Mn, Fe, Cu, and Zn increased with time after 6-OHDA treatment, although the time courses of their changes were region-specific. These findings contribute to our understanding of the roles of Mn and Fe in the induction of neurological symptoms and progressive loss of dopaminergic neurons in the development of Parkinson’s disease. Manganese may hold the key to disturbing cellular Fe homeostasis and accelerating Fe levels, which play the most important role in the development of Parkinson’s disease.

Keywords

Manganese Iron Copper Zinc Brain Parkinson’s disease 

Notes

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (10640539 and 14540512) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    Woodruff ML, Nonneman AJ (eds) (1994) Toxin-induced models of neurological disorders. Plenum, New YorkGoogle Scholar
  2. 2.
    Ebadi M, Srinivasan SK, Baxi MD (1996) Prog Neurobiol 48:1–19CrossRefPubMedGoogle Scholar
  3. 3.
    He Y, Thong PSP, Lee T, Leong SK, Shi CY, Wong PTH, Yuan SY, Watt F (1996) Brain Res 735:149–153CrossRefPubMedGoogle Scholar
  4. 4.
    Ponzoni S, Gaziri LCJ, Britto LRG, Barreto WJ, Blum D (2002) Neurosci Lett 328:170–174CrossRefPubMedGoogle Scholar
  5. 5.
    He Y, Lee T, Leong SK (1999) Neuroscience 91:579–585CrossRefPubMedGoogle Scholar
  6. 6.
    Chung JM, Chang SY, Kim YI, Shin HC (2000) Neurosci Lett 286:183–186PubMedCrossRefGoogle Scholar
  7. 7.
    Dexter DT, Carayon A, Javoy AF, Agid Y, Wells FR, Daniel SE, Lee AJ, Jenner P, Marsden CD (1991) Brain 114:1953–1975PubMedCrossRefGoogle Scholar
  8. 8.
    Tarohda T, Yamamoto M, Amano R (2004) Anal Bioanal Chem 380:240–246CrossRefPubMedGoogle Scholar
  9. 9.
    Dombovari J, Becker JS, Dietze HJ (2000) Fresenius J Anal Chem 367:407–413CrossRefPubMedGoogle Scholar
  10. 10.
    Mendez-Alvarez E, soto-Otero R, Hermida-Ameijeras A, Lopez-Real AM, Labandeira-Garcia JL (2001) Biochim Biophys Acta 1586:155–168Google Scholar
  11. 11.
    Ishida Y, Todaka K, Kuwahara I, Ishizuka Y, Hashiguchi H, Nishimori T, Mitsuyama Y (1998) Brain Res 809:107–114CrossRefPubMedGoogle Scholar
  12. 12.
    Ishida Y, Todaka K, Hashiguchi H, Takeda R, Mitsuyama Y, Nishimori T (2002) Brain Res 940:79–85CrossRefPubMedGoogle Scholar
  13. 13.
    Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego, CAGoogle Scholar
  14. 14.
    Paxinos G, Franklin KBJ (2000) The mouse brain in stereotaxic coordinates, 2nd edn. Academic, San Diego, CAGoogle Scholar
  15. 15.
    Pietra R, Sabbioni E, Brossa F, Gallorini M, Faruffini G, Fumagalli EM (1990) Analyst 115:1025–1028CrossRefPubMedGoogle Scholar
  16. 16.
    Jackson BP, Shaw Allen PL, Hopkins WA, Bertsch PM (2002) Anal Bioanal Chem 374:203–211CrossRefPubMedGoogle Scholar
  17. 17.
    Arslan Z, Ertas N, Tyson JF, Uden PC, Denoyer ER (2000) Fresen J Anal Chem 366:273–282CrossRefGoogle Scholar
  18. 18.
    Koplik R, Curdova E, Suchanek M (1998) Fresen J Anal Chem 360:449–451CrossRefGoogle Scholar
  19. 19.
    Labandeira-Garcia JL, Rozas G, Lopez-Martin E, Liste I, Guerra JM (1996) Exp Brain Res 108:69–84CrossRefPubMedGoogle Scholar
  20. 20.
    He Y, Lee T, Leong SK (2000) Brain Res 858:163–166CrossRefPubMedGoogle Scholar
  21. 21.
    Double KL, Gerlach M, Schunemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MBH, Riederer P, Ben-Shachar DB (2003) Biochem Pharmacol 66:489–494CrossRefPubMedGoogle Scholar
  22. 22.
    Zheng W, Ren S, Graziano JH (1998) Brain Res 799:334–342CrossRefPubMedGoogle Scholar
  23. 23.
    Galazka-Friedmen J, Bauminger ER, Koziorowski D, Friedman A (2004) Biochim Biophys Acta 1688:130–136PubMedGoogle Scholar
  24. 24.
    Leveugle B, Faucheux BA, Boyras C, Nillesse N, Spik G, Hirsch EC, Agid Y, Hof PR (1996) Acta Neuropathol 91:566–572CrossRefPubMedGoogle Scholar
  25. 25.
    Florence TM, Stauber JL (1989) Sci Total Environ 78:233–240CrossRefPubMedGoogle Scholar
  26. 26.
    Nagatomo S, Umehara F, Hanada K, Nobuhara Y, Takenaga S, Arimura K, Osame M (1999) J Neurol Sci 162:102–105CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Tohru Tarohda
    • 1
    • 2
  • Yasushi Ishida
    • 3
  • Keiichi Kawai
    • 4
  • Masayoshi Yamamoto
    • 5
  • Ryohei Amano
    • 4
    Email author
  1. 1.Division of Physical Science, Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  2. 2.Asanogawa General HospitalKanazawaJapan
  3. 3.Department of Psychiatry, Miyazaki Medical CollegeUniversity of MiyazakiMiyazakiJapan
  4. 4.Division of Health Sciences, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
  5. 5.Low Level Radioactivity Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityTatsunokuchiJapan

Personalised recommendations