Analytical and Bioanalytical Chemistry

, Volume 383, Issue 3, pp 454–460 | Cite as

Determination of arsenic species and arsenosugars in marine samples by HPLC–ICP–MS

  • Shizuko HirataEmail author
  • Hideki Toshimitsu
Special Issue Paper


Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP–MS detection. Separation of eight arsenic species—AsIII, MMA, DMA, AsV, AB, TMAO, AC and TeMAs+—was achieved on a C18 column with isocratic elution (pH 3.0), under which conditions AsIII and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC–ICP–MS detection limits for the eight arsenic species were in the range 0.03–0.23 μg L−1 based on 3σ for the blank response (n=5). The precision was calculated to be 2.4–8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18–9.59 μg g−1.


HPLC–ICP–MS Arsenic species Arsenosugars Marine algae Microwave extraction Sonication 



We are grateful to Professor K.V. Francesconi of Graz University in Austria for providing us a Fucus sample, which is useful for evaluating arsenosugars.


  1. 1.
    Tseng WP, Chu HM, How SW, Fong JM, Lin CSS, Yen S (1986) J Natl Cancer Inst 40:453Google Scholar
  2. 2.
    Brown J, Kitchin K (1997) Dimethylarsinic Acid treatment alters six different rat biochemical parameters: relevance to arsenic carcinogenesis. Teratogen Carcinogen Mutagen 17:71–84CrossRefGoogle Scholar
  3. 3.
    Toxicological profile for arsenic ATSDR/TP-88/02 (1989) Prepared by Life System Inc. for agency for Toxic substances and Disease Registry US Public Health Service, in collaboration with US EPA, March 1989, Oak Ridge National Laboratory, TNGoogle Scholar
  4. 4.
    McSheehy S, Szpunar J, Morabito R, Quevauviller P (2003) Tr Anal Chem 22:191–209CrossRefGoogle Scholar
  5. 5.
    Cullen WR, Reimer KJ (1989) Chem Rev 89:713CrossRefGoogle Scholar
  6. 6.
    Larsen EH, Pritzl G, Hansen SHJ (1993) J Anal At Spectrom 8:1075 –1084CrossRefGoogle Scholar
  7. 7.
    Francesconi KA, Edmonds JS (2005) In: AD, Ansell RN, Gibson, Barnes M (eds) Oceanography and marine biology: an annual review 31:111–151 (UCL Press)Google Scholar
  8. 8.
    Francesconi KA, Edmonds JS (1997) Adv Inorg Chem 44:147–189CrossRefGoogle Scholar
  9. 9.
    Lai VWM, Cullen WR, Ray S (1999) Mar Chem 66:81–89CrossRefGoogle Scholar
  10. 10.
    Lai VWM, Cullen WR, Harrington CF, Reimer KJ (1997) Appl Organomet Chem 11:797–803CrossRefGoogle Scholar
  11. 11.
    Francesconi KA, Goessler W, Panutrakul S, Irgolic KJ (1998) Sci Total Environ 221:139–148CrossRefGoogle Scholar
  12. 12.
    McSheehy S, Pohl P, Lobinski R, Szpunar J (2001) Anal Chim Acta 440:3–16CrossRefGoogle Scholar
  13. 13.
    Shibata Y, Morita M (1992) Appl Organomet Chem 6:343–349CrossRefGoogle Scholar
  14. 14.
    Yamaoka Y, Carmona ML, Oclarit JM, Jin K, Shibata Y (2001) Appl Organomet Chem 15:261–265CrossRefGoogle Scholar
  15. 15.
    Villa-Lojo MC, Alonso-Rodriguez E, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D (2002) Talanta 57:741–750CrossRefGoogle Scholar
  16. 16.
    Suner MA, Devesa V, Munoz O, Velez D, Montoro R (2001) J Anal At Spectrom 16:390–397CrossRefGoogle Scholar
  17. 17.
    Velez D, Ybanez N, Montor R (1997) J Anal At Spectrom 12:91–96CrossRefGoogle Scholar
  18. 18.
    Gomez-Ariza JL, Sanchez-Rodas D, Giraldez I, Morales E (2000) Talanta 51:257–268CrossRefGoogle Scholar
  19. 19.
    Dagnac T, Padro A, Rubio R, Rauret G (1999) Talanta 48:763–772CrossRefGoogle Scholar
  20. 20.
    Gomez-Ariza JL, Sanchez-Rodas D, Giraldez I, Morales E (2000) Analyst 125:401–407CrossRefGoogle Scholar
  21. 21.
    Simon S, Tran H, Pannier F, Potin-Gautier M (2004) J Chromatogr A 1024:105–113CrossRefPubMedGoogle Scholar
  22. 22.
    McKiernan JW, Creed JT, Brockhoff CA, Caruso JA, Lorenzana RM (1999) J Anal At Spectrom 14:607–613CrossRefGoogle Scholar
  23. 23.
    Ackley KL, B’Hymer C, Sutton KL, Caruso JA (1999) J Anal At Spectrom 14:845–850CrossRefGoogle Scholar
  24. 24.
    Hulle MV, Zhang C, Zhang X, Cornelis R (2002) Analyst 127:634–640CrossRefPubMedGoogle Scholar
  25. 25.
    Pedersen SN, Fransconi KA (2000) Rapid Commun Mass Spec 14:641–645CrossRefGoogle Scholar
  26. 26.
    Gallagher PA, Shoemaker JA, Wei X, Brockhoff-Schwegel CA, Creed JT (2001) Fresenius J Anal Chem 369:71–80CrossRefPubMedGoogle Scholar
  27. 27.
    Wahlen R, McSheehy S, Scriverc C, Mester Z (2004) J Anal At Spectrom 19:876–882CrossRefGoogle Scholar
  28. 28.
    Brisbin JA, B’Hymer C, Caruso JA (2002) Talanta 58:133–145CrossRefGoogle Scholar
  29. 29.
    Wangkram S, Pergantis SA (2000) J Anal At Spectrom 15:627–633CrossRefGoogle Scholar
  30. 30.
    Do B, Robinet S, Pradeau D, Guyon G (2001) J Chromatogr A 918:87–98CrossRefPubMedGoogle Scholar
  31. 31.
    Le XC, Cullen WR, Reimer KJ (1994) Environ Sci Technol 28:1598–1604CrossRefGoogle Scholar
  32. 32.
    Francesconi KA, Micks P, Stockton RA, Irgolic KJ (1985) Chemosphere 14:1443–1453CrossRefGoogle Scholar
  33. 33.
    Mattusch J, Wennrich R (1998) Anal Chem 70:3649–3655CrossRefGoogle Scholar
  34. 34.
    Londesborough S, Mattusch J, Wennrich R (1999) Fresenius J Anal Chem 363:577–581CrossRefGoogle Scholar
  35. 35.
    Kohlmeyer U, Kuballa J, Jantzen E (2002) Rapid Commun Mass Spectrom 16:965–974CrossRefPubMedGoogle Scholar
  36. 36.
    Roychowdhury SB, Koropchack JA (1990) Anal Chem 62:484–489CrossRefGoogle Scholar
  37. 37.
    Goessler W, Kuehnelt D, Schlagenhaufen C, Slejkovec Z, Irgolic KJ (1998) J Anal At Spectrom 13:183–187CrossRefGoogle Scholar
  38. 38.
    Gailer J, Irgolic KJ (1994) Appl Organomet Chem 8:129–140CrossRefGoogle Scholar
  39. 39.
    Larsen EH (1998) Spectrochim Acta B 53:253–265CrossRefGoogle Scholar
  40. 40.
    Falk K, Emons H (2000) J Anal At Spectrom 15:643–649CrossRefGoogle Scholar
  41. 41.
    Madsen AD, Goessler W, Pedersen SN, Francesconi KA (2000) J Anal At Spectrom 15:657–662CrossRefGoogle Scholar
  42. 42.
    Geiszinger A, Goessler W, Kuehnelt D, Francesconi KA, Kosmus W (1998) Environ Sci Technol 32:2238–2243CrossRefGoogle Scholar
  43. 43.
    Francesconi KA, Pergantis SA (2004) Analyst 129:398–399CrossRefPubMedGoogle Scholar
  44. 44.
    McSheehy S, Szpunar J, Lobiski R, Haldys V, Tortajada J, Edmonds JS (2002) Anal Chem 74:2370–2378CrossRefPubMedGoogle Scholar
  45. 45.
    Schmeisser E, Raml R, Francesconi KA, Kuehnelt D, Lindberg AL, Soros C, Goessler W (2004) Chem Commun 16:1824–1825CrossRefGoogle Scholar
  46. 46.
    Francesconi KA (2002) Appl Organomet Chem 16:437–445CrossRefGoogle Scholar
  47. 47.
    Karthikeyan S, Hirata S (2004) Appl Organomet Chem 18:323–330CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)KureJapan
  2. 2.Graduate School of Kinki UniversityHigashi-HiroshimaJapan

Personalised recommendations