Analytical and Bioanalytical Chemistry

, Volume 383, Issue 1, pp 83–91 | Cite as

FluMag-SELEX as an advantageous method for DNA aptamer selection

  • R. Stoltenburg
  • C. Reinemann
  • B. StrehlitzEmail author
Original Paper


Aptamers are ssDNA or RNA oligonucleotides with very high affinity for their target. They bind to the target with high selectivity and specificity because of their specific three-dimensional shape. They are developed by the so-called Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process. We have modified this method in two steps—use of fluorescent labels for DNA quantification and use of magnetic beads for target immobilization. Thus, radioactive labelling is avoided. Immobilization on magnetic beads enables easy handling, use of very small amounts of target for the aptamer selection, rapid and efficient separation of bound and unbound molecules, and stringent washing steps. We have called this modified SELEX technology FluMag-SELEX. With FluMag-SELEX we have provided a methodological background for our objective of being able to select DNA aptamers for targets with very different properties and size. These aptamers will be applied as new biosensor receptors. In this work selection of streptavidin-specific aptamers by FluMag-SELEX is described. The streptavidin-specific aptamers will be used to check the surface occupancy of streptavidin-coated magnetic beads with biotinylated molecules after immobilization procedures.


Aptamer SELEX Streptavidin Magnetic beads 



This work was supported by Sächsisches Staatsministerium für Umwelt und Landwirtschaft (Germany) within the Biotechnology Program (Project-No. 13-8811.61/93). We thank Nadia Nikolaus and Doerthe Mann for their kind assistance and critical reading of the manuscript.


  1. 1.
    Tuerk C, Gold L (1990) Science 249:505–510PubMedCrossRefGoogle Scholar
  2. 2.
    Ellington AD, Szostak JW (1990) Nature 346:818–822CrossRefPubMedGoogle Scholar
  3. 3.
    Sun S (2000) Curr Opin Mol Ther 23:100–105Google Scholar
  4. 4.
    O’Sullivan CK (2002) Anal Bioanal Chem 372:44–48CrossRefPubMedGoogle Scholar
  5. 5.
    Tombelli S, Minnuni M, Mascini M (2005) Biosens Bioelectron 20:2424–2434CrossRefPubMedGoogle Scholar
  6. 6.
    Luzi E, Minunni M, Tombelli S, Mascini M (2003) TrAC—Trends Anal Chem 22:810–818CrossRefGoogle Scholar
  7. 7.
    Clark SL, Remcho VT (2002) Electrophoresis 23:1335–1340CrossRefPubMedGoogle Scholar
  8. 8.
    Deng Q, German I, Buchanan D, Kennedy RT (2001) Anal Chem 73:5415–5421CrossRefPubMedGoogle Scholar
  9. 9.
    German I (1998) Anal Chem 70:4540–4545CrossRefPubMedGoogle Scholar
  10. 10.
    Davis KA, Abrams B, Lin Y, Jayasena (1996) Nucleic Acids Res 24:702–706CrossRefPubMedGoogle Scholar
  11. 11.
    Potyrailo RA, Conrad RC, Ellington AD, Hieftje GM (1998) Anal Chem 70:3419–3425CrossRefPubMedGoogle Scholar
  12. 12.
    Liss M, Petersen B, Wolf H, Prohaska E (2002) Anal Chem 74:4488–4495CrossRefPubMedGoogle Scholar
  13. 13.
    Ulrich H, Martins AHB, Pesquero JB (2004) Cytometry 59A:220–231CrossRefPubMedGoogle Scholar
  14. 14.
    Brody EN, Gold L (2000) Rev Mol Biotechnol 74:5–13CrossRefGoogle Scholar
  15. 15.
    Crameri A, Stemmer WP (1993) Nucleic Acids Res 21:4410PubMedCrossRefGoogle Scholar
  16. 16.
    Williams KP, Bartel DP (1995) Nucleic Acids Res 23:4220–4221PubMedCrossRefGoogle Scholar
  17. 17.
    Zuker M (2003) Nucleic Acids Res 31:3406–3415CrossRefPubMedGoogle Scholar
  18. 18. Scholar
  19. 19.
    Srisawat C, Engelke DR (2002) Methods 26:156–161CrossRefPubMedGoogle Scholar
  20. 20.
    Tahiri-Alaoui A, Frigotto L, Manville N, Ibrahim J, Romby P, James W (2002) Nucleic Acids Res 30:e45 (1–9)CrossRefPubMedGoogle Scholar
  21. 21.
    Bittker JA, Le BV, Liu DR (2002) Nat Biotechnol 20:1024–1029CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Environmental BiotechnologyCentre for Environmental Research Leipzig-Halle GmbH (UFZ)LeipzigGermany

Personalised recommendations