Advertisement

Analytical and Bioanalytical Chemistry

, Volume 382, Issue 7, pp 1534–1540 | Cite as

Molecularly-imprinted polypyrrole-modified stainless steel frits for selective solid phase preconcentration of ochratoxin A

  • Jorn C. C. Yu
  • Svetla Krushkova
  • Edward P. C. LaiEmail author
  • Ewa Dabek-Zlotorzynska
Original Paper

Abstract

A molecularly-imprinted polymer (MIP) was prepared by electropolymerization of pyrrole (Py) onto a stainless steel frit, using ochratoxin A (OTA) as the template, in order to make a micro solid phase preconcentration (μSPP) device. The OTA template was removed with 1% triethylamine (TEA) in methanol. Compared to non-imprinted polypyrrole (PPy), the molecularly-imprinted polypyrrole (MIPPy) enhanced the selective binding of OTA. The percentage recovery improved from 0 to 40% when the OTA sample solution was acidified with 1 M HCl (1% by volume). At a flow rate of 0.2 mL/min, maximum OTA binding was reached in 6 min after a total loading of 3.2 ng OTA. Final elution of the OTA was analyzed by high performance liquid chromatography (HPLC) with fluorescence detection, using 20:80 v/v acetonitrile–ammonia buffer (NH4Cl/NH3, 20 mM, pH 9.2) as the mobile phase. The MIPPy-μSPP-HPLC results clearly demonstrated that the MIPPy-μSPP device afforded selective preconcentration of OTA from red wine samples, at OTA concentration levels as low as 0.05 ppb, prior to HPLC analysis.

Keywords

Electro-imprinting Molecularly-imprinted polymer Polypyrrole Stainless steel frit Micro solid phase preconcentration Ochratoxin A 

Notes

Acknowledgments

Financial support of the Natural Sciences and Engineering Research Council (NSERC) Canada is gratefully acknowledged. S.K. thanks Environment Canada for funding of a Science Horizons Youth Internship Program placement.

References

  1. 1.
    Monaci L, Palmisano F (2004) Anal Bioanal Chem 378:96–103CrossRefPubMedGoogle Scholar
  2. 2.
    Valenta H (1998) J Chromatogr A 815:75–92CrossRefPubMedGoogle Scholar
  3. 3.
    Domijan AM, Peraica M, Miletic-Medved M, Lucic A, Fuchs R (2003) J Chromatogr B 798:317–321CrossRefGoogle Scholar
  4. 4.
    Maier NM, Buttinger G, Welhartizki S, Gavioli D, Lindner W (2004) J Chromatogr A 804:103CrossRefGoogle Scholar
  5. 5.
    Jornet D, Busto O, Guasch J (2000) J Chromatogr A 882:29–35CrossRefPubMedGoogle Scholar
  6. 6.
    Kataoka H (2003) Trends Anal Chem 22:232–244CrossRefGoogle Scholar
  7. 7.
    Alltech Chromatography Sourcebook (2004) Catalog 550:572–573Google Scholar
  8. 8.
    Li KM, Thompson MR, McGregor IS (2004) J Chromatogr B 804:319–326CrossRefGoogle Scholar
  9. 9.
    Wu J, Yu X, Lord H, Pawliszyn J (2000) Analyst 125:391–394CrossRefGoogle Scholar
  10. 10.
    Sadki S, Schottland P, Brodie N, Sabouraud G (2000) Chem Soc Rev 29:283–293CrossRefGoogle Scholar
  11. 11.
    Chen F, Shi G, Fu M, Qu L, Hong X (2003) Synth Met 132:125–132CrossRefGoogle Scholar
  12. 12.
    Wu J, Pawliszyn J (2001) J Chromatogr A 909:37–52CrossRefPubMedGoogle Scholar
  13. 13.
    Liljegren G, Pettersson J, Markides KE, Nyholm L (2002) Analyst 127:591–597CrossRefPubMedGoogle Scholar
  14. 14.
    Yu JCC, Lai EPC (2005) Anal Bioanal Chem 381:948–952CrossRefPubMedGoogle Scholar
  15. 15.
    Korri-Youssoufi H, Garnier F, Kassmi AE, Godillot P, Srivastava P (1997) Synth Met 84:169–170CrossRefGoogle Scholar
  16. 16.
    Zhou SN, Lai EP, Miller JD (2004) Anal Bioanal Chem 378(8):1903–1906CrossRefPubMedGoogle Scholar
  17. 17.
    Jodlbauer J, Maier NM, Lindner W (2002) J Chromatogr A 945:45–63CrossRefPubMedGoogle Scholar
  18. 18.
    Ersoz A, Gavalas VG, Bachas LG (2002) Anal Bioanal Chem 372(7–8):786–790CrossRefPubMedGoogle Scholar
  19. 19.
    Shiigi H, Kishimoto M, Yakabe H, Deore B, Nagaoka T (2002) Anal Sci 18(1):41–44CrossRefPubMedGoogle Scholar
  20. 20.
    Ramanaviciene A, Ramanavicius A (2004) Biosens Bioelectron 20(6):1076–1082CrossRefPubMedGoogle Scholar
  21. 21.
    Gong JL, Gong FC, Kuang Y, Zeng GM, Shen GL, Yu RQ (2004) Anal Bioanal Chem 379:302–307CrossRefPubMedGoogle Scholar
  22. 22.
    Weetall HH, Rogers KR (2004) Talanta 62:329–335CrossRefGoogle Scholar
  23. 23.
    González-Peñas E, Leache C, Viscarret M, Pérez de Obanos A, Araguás C, López de Cerain A (2004) J Chromatogr A 1025:163–168CrossRefPubMedGoogle Scholar
  24. 24.
    Blesa J, Soriano JM, Moltó JC, Mañes J (2004) J Chromatogr A 1054:397–401CrossRefPubMedGoogle Scholar
  25. 25.
    Antonio M, Carmine N, Luca T, Pietro DL (2003) J Wine Res 14(2–3):115–120CrossRefGoogle Scholar
  26. 26.
    Visconti A, Pascale M, Centonze G (1999) J Chromatogr A 864:89–101CrossRefPubMedGoogle Scholar
  27. 27.
    Stefanaki I, Foufa E, Tsatsou-Dritsa A, Dais P (2003) Food Addit Contam 20:74–83CrossRefPubMedGoogle Scholar
  28. 28.
    Shephard GS, Fabiani A, Stockenström S, Mshicileli N, Sewram V (2003) J Agric Food Chem 51:1102–1106CrossRefPubMedGoogle Scholar
  29. 29.
    Soufleros EH, Tricard C, Bouloumpasi EC (2003) J Sci Food Agric 83:173–179CrossRefGoogle Scholar
  30. 30.
    Yu JCC, Krushkova S, Lai EPC, Dabek-Zlotorzynska E (2005) Synth Met (submitted)Google Scholar
  31. 31.
    Jodlbauer J, Maier NM, Lindner W (2002) J Chromatogr A 945:45–63CrossRefPubMedGoogle Scholar
  32. 32.
    Maier NM, Buttinger G, Welhartizki S, Gavioli E, Lindner W (2004) J Chromatogr B 804:103–111CrossRefGoogle Scholar
  33. 33.
    Turner NW, Piletska EV, Karim K, Whitcombe M, Malecha M, Magan N, Baggiani C, Piletsky SA (2004) Biosens Bioelectr 20:1060–1067CrossRefGoogle Scholar
  34. 34.
    Feng SY, Lai EPC, Dabek-Zlotorzynska E, Sadeghi S (2004) J Chromatogr A 1027:155–160PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jorn C. C. Yu
    • 1
  • Svetla Krushkova
    • 1
  • Edward P. C. Lai
    • 1
    Email author
  • Ewa Dabek-Zlotorzynska
    • 2
  1. 1.Department of Chemistry, Ottawa-Carleton Chemistry InstituteCarleton UniversityOttawaCanada
  2. 2.Environmental Technology CentreEnvironment CanadaOttawaCanada

Personalised recommendations