Analytical and Bioanalytical Chemistry

, Volume 382, Issue 6, pp 1438–1443 | Cite as

Fluorescence spectroscopy for monitoring deterioration of extra virgin olive oil during heating

  • Rana CheikhousmanEmail author
  • Manuela Zude
  • Delphine Jouan-Rimbaud Bouveresse
  • Claude L. Léger
  • Douglas N. Rutledge
  • Inés Birlouez-Aragon
Short Communication


The potential of fluorescence spectroscopy for characterizing the deterioration of extra virgin olive oil (EVOO) during heating was investigated. Two commercial EVOO were analysed by HPLC to determine changes in EVOO vitamin E and polyphenols as a result of heating at 170°C for 3 h. This thermal oxidation of EVOO caused an exponential decrease in hydroxytyrosol and vitamin E (R2=0.90 and 0.93, respectively) whereas the tyrosol content was relatively stable. At the same time, amounts of preformed hydroperoxides (ROOH), analysed by an indirect colorimetric method, decreased exponentially during the heating process (R2=0.94), as a result of their degradation into secondary peroxidation products. Fluorescence excitation spectra with emission at 330 and 450 nm were recorded to monitor polyphenols and vitamin E evolution and ROOH degradation, respectively. Partial least-squares calibration models were built to predict these indicators of EVOO quality from oil fluorescence spectra. A global approach was then proposed to monitor the heat charge from the overall fluorescence fingerprint. Different data pretreatment methods were tested. This study indicates that fluorescence spectroscopy is a promising, rapid, and cost-effective approach for evaluating the quality of heat-treated EVOO, and is an alternative to time-consuming conventional analyses. In future work, calibration models will be developed using a wide range of EVOO samples.


Olive oil Fluorescence EVOO Polyphenols Vitamin E PLS 


Conflict of interest:

No information supplied


  1. 1.
    Engelsen SB (1997) J Am Oil Chem Soc 74:1495–1508Google Scholar
  2. 2.
    José L, Quiles M, Ramirez-Tortosa C, Gümez JA, Huertas JR, José M (2002) J Food Chem 76:461–468CrossRefGoogle Scholar
  3. 3.
    Fedel E (1988) Ellis Horwood Press, Chichester, England, Vch, pp 52–81Google Scholar
  4. 4.
    Nissiotis M, Tasioula-Margari M (2003) J Food Chem 77:371–376CrossRefGoogle Scholar
  5. 5.
    Pellegini N, Francesco V, Buratti S, Brighenti F (2001) J Agric Food Chem 49:2532–2538CrossRefPubMedGoogle Scholar
  6. 6.
    Ribarova F, Zanev R, Shishkov S, Rizov N (2003) J Food Composition Anal 16:569–667Google Scholar
  7. 7.
    Perrin J-L (1992) Revue française des corps gras 39:25–32Google Scholar
  8. 8.
    Gutfinger T (1981) J Am Oil Chem Soc 58:966–968Google Scholar
  9. 9.
    Rastrelli L, Passi S, Ippolito F, Vacca G, De Simone F (2002) J Agric Food Chem 50:5566–5570CrossRefPubMedGoogle Scholar
  10. 10.
    Evangelisti F, Zunin P, Tiscornia E, Petacchi R, Drava G, Lanteri S (1997) J Am Oil Chem Soc 74:1017–1023Google Scholar
  11. 11.
    Amiot MJ, Fleuriet A, Macheix JJ (1986) J Agric Food Chem 34:823–826CrossRefGoogle Scholar
  12. 12.
    Cinquanta L, Esti M, La Notte E (1997) J Am Oil Chem Soc 74:1259–1264Google Scholar
  13. 13.
    Gümez-Alonso S, Salvador MD, Fregapane G (2002) J Agric Food Chem 50:6812–6817CrossRefPubMedGoogle Scholar
  14. 14.
    Brenes M, Gracßa A, Dobarganes MC, Velasco J, n Romero C (2002) J Agric Food Chem 50:5962–5967CrossRefPubMedGoogle Scholar
  15. 15.
    Sacchi R, Paduano A, Fiore F, Della Medaglia D, Ambrosino ML, Medina I (2002) J Agric Food Chem 50:2830–2835CrossRefPubMedGoogle Scholar
  16. 16.
    Sikorska E, Romaniuk A, Khmelinskii IV, Herance R, Bourdelande JL, Sikorski M, Koziol J (2003) MAF, Prague, August 24–27Google Scholar
  17. 17.
    Liang JH, Lin CC (2000) J Am Oil Chem Soc 77:709–713Google Scholar
  18. 18.
    Lai YW, Kemsley EK, Wilson RH (1995) J Food Chem 53:95–98CrossRefGoogle Scholar
  19. 19.
    Zhen-Yue J, Woollard ACS, Wolff SP (1991) Lipids 26:853–856PubMedGoogle Scholar
  20. 20.
    Birlouez-Aragon I, Girard F, Ravelontseheno L, Bourgeois C, Belliot J-P, Abitbol G (1995) Int J Vit Nutr Res 65:261–266Google Scholar
  21. 21.
    Despagne F, Massart DL (1997) J Anal Chem 69:3391–3399CrossRefGoogle Scholar
  22. 22.
    Otto M (1999) Chemometrics, Wiley-VCH, NYGoogle Scholar
  23. 23.
    Westerhuis JA, de Jong CS, Smilde AK (2001) J Chemom Intell Lab Syst 56:13–25CrossRefGoogle Scholar
  24. 24.
    Luypaert J, Heuerding S, de Jong CS, Massart DL (2002) J Pharm Biomed Anal 30:453–466PubMedGoogle Scholar
  25. 25.
    Baldioli M, Servili M, Perretti G, Montadoro GF (1996) J Am Oil Chem Soc 60:1589–1593Google Scholar
  26. 26.
    Esterbauer H, Koller E, Slee RG, Koster JF (1986) Biochem 239(2):405–409Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Rana Cheikhousman
    • 1
    Email author
  • Manuela Zude
    • 1
  • Delphine Jouan-Rimbaud Bouveresse
    • 1
  • Claude L. Léger
    • 2
  • Douglas N. Rutledge
    • 1
  • Inés Birlouez-Aragon
    • 1
  1. 1.Laboratoire de chimie analytique, Institut National Agronomique Paris-GrignonINRA UMR Ingénierie Analytique pour la Qualité des Aliments (IAQA)Paris cedex 05France
  2. 2.Laboratoire Nutrition Humaine et AthérogénèseInstitut de BiologieMontpellier Cedex 02France

Personalised recommendations