Analytical and Bioanalytical Chemistry

, Volume 382, Issue 6, pp 1380–1388 | Cite as

Three-way partial least-squares regression for the simultaneous kinetic-enzymatic determination of xanthine and hypoxanthine in human urine

  • José Manuel Amigo
  • Jordi CoelloEmail author
  • Santiago Maspoch
Original Paper


The performance of three-way principal component analysis and three-way partial least-squares regression when applied to a complex kinetic-enzymatic system is studied, in order to investigate the analytical potential of the combined use of these chemometric technologies for non-selective enzymatic systems. A enzymatic-kinetic procedure for the simultaneous determination of hypoxanthine and xanthine in spiked samples of human urine is proposed. The chemical system involves two consecutive reactions catalyzed by xanthine oxidase (EC This enzyme catalyzes the oxidation of hypoxanthine, first to xanthine and then to uric acid, a competitive inhibitor of the reactions. The influence of uric acid during quantitative determination was considered in the design of the calibration set. The sample and enzyme solution were mixed in a stopped-flow module and the reaction was monitored using a diode array spectrophotometer. The recorded data have an intrinsical three-component structure (samples, time and wavelength). This data array was studied via three-way principal component analysis and was modeled for quantitative purposes using a three-way partial least-squares calibration procedure. Results are compared with those obtained by applying classical bilinear PLS to the previously unfolded data matrix.


Oxipurines Urine analysis Three-way principal component analysis Three-way partial least-squares regression Simultaneous kinetic determination 



The authors gratefully acknowledge the financial support of this work by the Ministerio de Ciencia y Tecnología (DGI BQU2001–2019) and the Comissionat per a Universitats i Recerca of the Generalitat de Catalunya (2001-SGR-00176).


  1. 1.
    Pettersson Å, Karlberg B (1997) Anal Chim Acta 354:241–248Google Scholar
  2. 2.
    Crouch SR, Coello J, Maspoch S, Porcel M (2000) Anal Chim Acta 424:115–126Google Scholar
  3. 3.
    Coello J, Maspoch S, Villegas N (2000) Talanta 53:627–637Google Scholar
  4. 4.
    Ni Y, Huang C, Kokot S (2004) Chemom Intell Lab Syst 71:177–193Google Scholar
  5. 5.
    Blanco M, Coello J, Iturriaga H, Maspoch S, Porcel M (1999) Anal Chim Acta 398:83–92Google Scholar
  6. 6.
    Escribano J, Garcia-Canovas F, Garcia-carmona F (1988) J Biochem 254:829–833Google Scholar
  7. 7.
    Tawa R, Kito M, Hirose S (1981) Chem Lett 745–748Google Scholar
  8. 8.
    Putterman GJ, Shaikh B, Hallmark MR, Sawyer CG, Hixson CV, Perini F (1979) Anal Biochem 98:18–26PubMedGoogle Scholar
  9. 9.
    Czauderna M, Kowalczyk J (1997) J Chromatogr B 704:89–98Google Scholar
  10. 10.
    Di Pietro MC, Vannoni D, Leoncini R, Liso G, Guerranti R, Marinello E (2001) J Chromatogr B 751:87–92Google Scholar
  11. 11.
    Chen G, Chu Q, Zhang L, Ye J (2002) Anal Chim Acta 457:225–233Google Scholar
  12. 12.
    Zen J-M, Lai Y-Y, Yang H-H, Senthil Kumar A (2002) Sens Actuator B 84:237–244CrossRefGoogle Scholar
  13. 13.
    Pei J, Li XY (2000) Anal Chim Acta 414:205–213Google Scholar
  14. 14.
    Foppoli C, Coccia R, Cini C, Rosei MA (1997) Biochim Biophys Acta 1334:200–206Google Scholar
  15. 15.
    Carsol M-A, Mascini M (1998) Talanta 47:335–342Google Scholar
  16. 16.
    Geladi P (1989) Chemom Intell Lab Syst 7:11–30Google Scholar
  17. 17.
    Sanchez E, Kowalski BR (1990) J Chemom 4:29–45Google Scholar
  18. 18.
    Wold S, Geladi P, Esbensen K, Öhman J (1987) J Chemom 1:41–56Google Scholar
  19. 19.
    Henrion R (1994) Chemom Intell Lab Syst 25:1–23Google Scholar
  20. 20.
    Bro R (1997) Appl Spectrosc Rev 32–3:237–261Google Scholar
  21. 21.
    Tucker L (1963) Problems of measuring change. University of Wisconsin Press, Madison, WI, pp 122–137Google Scholar
  22. 22.
    Tauler R (1995) Chemom Intell Lab Syst 30:133–146Google Scholar
  23. 23.
    Bro R (1996) J Chemom 10:47–61Google Scholar
  24. 24.
    Massey V, Brumby PE, Komai H, Palmer G (1969) J Biol Chem 244–247:1682–1691Google Scholar
  25. 25.
    Jeżewska MM (1973) Eur J Biochem 36:385–390PubMedGoogle Scholar
  26. 26.
    Lindsey AS, Sharma RK (1981) Anal Lett 14-B10:799–811Google Scholar
  27. 27.
    Smilde AK (1997) J Chemom 11:367–377Google Scholar
  28. 28.
    Jong S (1998) J Chemom 12:77–81CrossRefGoogle Scholar
  29. 29.
    Kiers HAL (1991) Psychometrica 56:449–470Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • José Manuel Amigo
    • 1
  • Jordi Coello
    • 1
    Email author
  • Santiago Maspoch
    • 1
  1. 1.Universitat Autónoma de BarcelonaBarcelonaSpain

Personalised recommendations