Advertisement

Analytical and Bioanalytical Chemistry

, Volume 382, Issue 4, pp 918–925 | Cite as

Fiber-optic nanosensors for single-cell monitoring

  • Tuan Vo-Dinh
  • Paul Kasili
Review

Abstract

This article is an overview of the fabrication, operating principles, and applications of fiber-optic nanobiosensors with the capability of in-vivo analysis at the single-cell level. Recently, the cross-disciplinary integration of nanotechnology, biology, and photonics has been revolutionizing important areas in molecular biology, especially diagnostics and therapy at the molecular and cellular level. Fiber-optic nanobiosensors are a unique class of biosensor that enable analytical measurements in individual living cells and the probing of individual chemical species in specific locations within a cell. This article provides a review of the research performed in our laboratory and discusses the usefulness and potential of this nanotechnology-based biosensor system in biological research and its applications to biomonitoring of individual cells.

Keywords

Fiber-optic nanosensor Nanobiosensor Nanotechnology Biosensor Single cells Apoptosis 

References

  1. 1.
    Vo-Dinh T, Sepaniak MJ, Griffin GD, Alarie JP (1993) Immunosensors: principles and applications, in immuno methods. Academic Press, NY, pp 85–92Google Scholar
  2. 2.
    Vo-Dinh T, Griffin GD, Sepaniak MJ (1991) In: Wolfbeis OS (ed) Fiber optic immunosensors, in CRC handbook: chemical sensors and biosensors. CRC Press, Boca Raton, FL, USAGoogle Scholar
  3. 3.
    Vo-Dinh T et al (1987) Antibody-based fiber optics biosensor for the carcinogen benzo[a]pyrene. Appl Spectrosc 41(5):735–738Google Scholar
  4. 4.
    Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier—optical microscopy on a nanometric scale. Science 251(5000):1468–1470Google Scholar
  5. 5.
    Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262(5138):1422–1425Google Scholar
  6. 6.
    Tan W, Shi ZY, Smith S, Birnbaum D, Kopelman R (1992) Submicrometer intracellular chemical optical fiber sensors. Science 258(5083):778–781PubMedGoogle Scholar
  7. 7.
    Tan W, Shi ZY, Smith S, Kopelman R (1992) Development of submicron chemical optic sensors. Anal Chem 64(23):2985–2990Google Scholar
  8. 8.
    Zeisel D, Deckert V, Zenobi R, Vo-Dinh T (1998) Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chem Phys Lett 283(5–6):381–385Google Scholar
  9. 9.
    Deckert V, Zeisel D, Zenobi R, Vo-Dinh T (1998) Near-field surface enhanced Raman imaging of dye-labeled DNA with 100-nm resolution. Anal Chem 70(13):2646–2650Google Scholar
  10. 10.
    Cullum B, Griffin GD, Miller GH, Vo-Dinh T (2000) Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem 277(1):25–32PubMedGoogle Scholar
  11. 11.
    Kasili PM et al (2002) Nanosensor for in-vivo measurement of the carcinogen benzo[a]pyrene in a single cell. J Nanosci Nanotechnol 2(6):653–658PubMedGoogle Scholar
  12. 12.
    Vo-Dinh T, Alarie JP, Cullum BM, Griffin GD (2000) Antibody-based nanoprobe for measurement of a fluorescent analyze in a single cell. Nat Biotechnol 18(7):764–767PubMedGoogle Scholar
  13. 13.
    Vo-Dinh T, Griffin GD, Alarie JP, Cullum BM, Sumpter B, Noid DJ (2000) Development of nanosensors and bioprobes. J Nanoparticle Res 2:17–27Google Scholar
  14. 14.
    Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366(6–7):540–551PubMedGoogle Scholar
  15. 15.
    Nice EC, Catimel B (1999) Instrumental biosensors: new perspectives for the analysis of biomolecular interactions. Bioessays 21(4):339–352PubMedGoogle Scholar
  16. 16.
    Weetall HH (1999) Chemical sensors and biosensors, update, what, where, when and how. Biosens Bioelectron 14(2):237–242Google Scholar
  17. 17.
    Tess ME, Cox JA (1999) Chemical and biochemical sensors based on advances in materials chemistry. J Pharm Biomed Anal 19(1–2):55–68PubMedGoogle Scholar
  18. 18.
    Braguglia CM (1998) Biosensors: an outline of general principles and application. Chem Biochem Eng Q 12(4):183–190Google Scholar
  19. 19.
    Cullum B, Vo-Dinh T (2000) The development of optical nanosensors for biological measurements. Trends Biotechnol 18(9):388–393PubMedGoogle Scholar
  20. 20.
    Kasili PM, Song JM, Vo-Dinh T (2004) Optical sensor for the detection of caspase-9 activity in a single cell. J Am Chem Soc 9(126):2799–806CrossRefGoogle Scholar
  21. 21.
    Song JM et al (2004) Detection of cytochrome c in a single cell using an optical nanobiosensor. Anal Chem 76(9):2591–2594PubMedGoogle Scholar
  22. 22.
    Vo-Dinh T (1989) Chemical analysis of polycyclic aromatic compounds. Wiley, NYGoogle Scholar
  23. 23.
    Alarie J, Vo-Dinh T (1996) Antibody-based submicron biosensor for benzo[a]pyrene DNA adduct. Polycyclic Aromatic Compounds 8(1):45–52Google Scholar
  24. 24.
    Alarie JP, Sepaniak MJ, Vo-Dinh T (1990) Evaluation of antibody immobilization techniques for fiber optic-based fluoroimmunosensing. Anal Chim Acta 229(2):169–176Google Scholar
  25. 25.
    Vo-Dinh T, Tromberg BJ, Griffin GD, Ambrose KR, Sepaniak MJ, Gardenhire EM (1987) Antibody fiber optics biosensor for the carcinogen benzo(a)pyrene. Appl Spectroscopy 5(41):735Google Scholar
  26. 26.
    Nicholson D, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 8:299–306CrossRefGoogle Scholar
  27. 27.
    Cohen GMAP (1997)—Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16PubMedGoogle Scholar
  28. 28.
    Kasili PM, Song JM, Vo-Dinh T (2004) Optical sensor for the detection of caspase-9 activity in a single cell. J Am Chem Soc 9(126):2799–806CrossRefGoogle Scholar
  29. 29.
    Noodt B, Berg K, Stokke T (1996) Apoptosis and necrosis induced with light and 5-aminolaevulinic acid-derived protoporphyrin IX. Br J Cancer 74(1):22–29PubMedGoogle Scholar
  30. 30.
    Tan WH, Shi ZY, Kopelman R (1992) Development of submicron chemical fiber-optic sensors. Anal Chem 64(23):2985–2990Google Scholar
  31. 31.
    Tan WH et al (1992) Submicrometer intracellular chemical optical fiber sensors. Science 258(5083):778–781PubMedGoogle Scholar
  32. 32.
    Samuel J et al (1994) Miniaturization of organically doped sol-gel materials—a microns-size fluorescent ph sensor. Materials Lett 21(5–6):431–434Google Scholar
  33. 33.
    McCulloch SaUD (1995) IEE Proceedings-Optoelectronics, vol 144. p 162Google Scholar
  34. 34.
    Tan WH, Shi ZY, Kopelman R (1995) Miniaturized fiber-optic chemical sensors with fluorescent dye—doped polymers. Sens Actuators B-Chem 28(2):157–163CrossRefGoogle Scholar
  35. 35.
    Song A, Parus S, Kopelman R (1997) High-performance fiber optic pH microsensors for practical physiological measurements using a dual-emission sensitive dye. Anal Chem 69(5):863–867PubMedGoogle Scholar
  36. 36.
    Koronczi I et al (1998) Development of a submicron optochemical potassium sensor with enhanced stability due to internal reference. Sens Actuators B-Chem 51(1–3):188–195CrossRefGoogle Scholar
  37. 37.
    Bui JD et al (1999) Probing intracellular dynamics in living cells with near-field optics. J Neurosci Methods 89(1):9–15PubMedGoogle Scholar
  38. 38.
    Barker SLR, Kopelman R (1998) Development and cellular applications of fiber optic nitric oxide sensors based on a gold-adsorbed fluorophore. Anal Chem 70(23):4902–4906PubMedGoogle Scholar
  39. 39.
    Munkholm C, Walt DR, Milanovich FP (1987) Preparation of co2 fiber-optic chemical sensor. Abstr Papers Am Chem Soc 193:183-ANYLGoogle Scholar
  40. 40.
    Munkholm C, Parkinson DR, Walt DR (1990) Intramolecular fluorescence self-quenching of fluoresceinamine. J Am Chem Soc 112(7):2608–2612Google Scholar
  41. 41.
    Barker SLR, Thorsrud BA, Kopelman R (1998) Nitrite- and chloride-selective fluorescent nano-optodes and in in vitro application to rat conceptuses. Anal Chem 70(1):100–104PubMedGoogle Scholar
  42. 42.
    Tan WH et al (1999) Ultrasmall for cellular. Anal Chem 71(17):606A–612APubMedGoogle Scholar
  43. 43.
    Barker SLR et al (1998) Fiber-optic nitric oxide-selective biosensors and nanosensors. Anal Chem 70(5):971–976PubMedGoogle Scholar
  44. 44.
    Vo-Dinh T, Cullum BM (2003) CRC handbook for biomedical photonics. In: Vo-Dinh T (ed) Nanosensors for single-cell analysis, vol 14. CRC Press, NYGoogle Scholar
  45. 45.
    Barker S, Kopelman R (1998) Development and cellular applications of fiber optic nitric oxide sensors based on a gold-adsorbed fluorophore. Anal Chem 70(23):4902–4906PubMedGoogle Scholar
  46. 46.
    Tan W, Shi ZY, Kopelman R (1992) Development of submicron chemical fiber-optic sensors. Anal Chem 64(23):2985–2990Google Scholar
  47. 47.
    Uttamchandani D, McCulloch S (1996) Optical nanosensors—towards the development of intracellular monitoring. Adv Drug Delivery Rev 21:239–247Google Scholar
  48. 48.
    Vo-Dinh T (2002) Nanobiosensors: probing the sanctuary of individual living cells. J Cellular Biochem 39(Supp 161):154CrossRefGoogle Scholar
  49. 49.
    Shortreed M, Kopelman R, Kunh M, Hoyland B (1996) Fluorescent fiber-optic calcium sensor for physiological measurements. Anal Chem 68(8):1414–1418PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Oak Ridge National LaboratoryAdvanced Biomedical Science and Technology GroupOak RidgeUSA

Personalised recommendations