Analytical and Bioanalytical Chemistry

, Volume 382, Issue 1, pp 125–133

An environmentally friendly method for the extraction and determination of priority phenols in soils using microwave-assisted micellar extraction

  • Cristina Mahugo Santana
  • Zoraida Sosa Ferrera
  • José J. Santana Rodríguez
Original Paper

Abstract

A non-ionic surfactant, polyoxyethylene 10 lauryl ether (POLE), was used for the microwave-assisted extraction (MAE) of priority phenolic compounds from soil samples. A central composite design was applied to optimize the extraction parameters, namely, time and power. Under the optimized conditions, the method was applied to different soil samples in order to analyze the influence of soil characteristics on the phenol extraction. Results demonstrated that most of these compounds can be recovered from the soils investigated in good yields (higher than 80%). The standard deviation is lower than 9% (n = 6) for most analytes. Validation of the method by analyzing a reference soil sample containing eight phenols and a comparison with Soxhlet extraction are also reported.

Keywords

Phenols Micellar medium Extraction methods Microwave Soils High-performance liquid chromatography 

References

  1. 1.
    Moore JW, Ramamoorthy S (1984) Phenols in organic chemicals in nature waters. Applied monitoring and impact assessment. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Martínez D, Pocurull E, Marcé RM, Borrull F, Calull M (1996) J Chromatogr A 734:367–373Google Scholar
  3. 3.
    Kontsas H, Rosenberg C, Pfäffli P, Jäppinen P (1995) Analyst 120:1745–1749Google Scholar
  4. 4.
    Mckague AB (1981) J Chromatogr A 208:287–293Google Scholar
  5. 5.
    Tremp J, Mattrel P, Fingler S (1993) Water Air Soil Pollut 68:113–123Google Scholar
  6. 6.
    Environmental Protection Agency (1984) EPA method 604 phenols in Federal Register, Part VIII, 40 cFR Part 136, p 58Google Scholar
  7. 7.
    Drinking Water Directive 80/778/EEC (1980) Commission of the European Communities, BrusselsGoogle Scholar
  8. 8.
    DiCorcia (1973) J Chromatogr 80:69–76Google Scholar
  9. 9.
    Hoshika Y (1977) J Chromatogr 144:181–187Google Scholar
  10. 10.
    Prosen H, Zupancic-Kralj L (1999) Trends Anal Chem 18:272–282Google Scholar
  11. 11.
    Kawata K, Ibaraki T, Tanabe A, Yagoh H, Shinoda A, Suzuki H, Yasuhara A (2001) J Chromatogr A 911:75–83Google Scholar
  12. 12.
    Li B, Yang Y, Eaton CD, He P, Jones AD (2000) J Chromatogr A 873:175–184Google Scholar
  13. 13.
    Buchhloz KD, Pawliszyn J (1994) Anal Chem 66:160–167Google Scholar
  14. 14.
    Lopez-Avila V, Young R (1994) Anal Chem 66:1097–1106Google Scholar
  15. 15.
    Llompart MP, Lorenzo RA, Cela R, Jocelyn Paré JR (1997) Analyst 122:133–137Google Scholar
  16. 16.
    Lee MR, Yeh YC, Hsiang WS, Hwang BH (1998) J Chromatogr A 806:317–324Google Scholar
  17. 17.
    Zlotorzynski A (1995) Rev Anal Chem 25:43–76Google Scholar
  18. 18.
    Ho WH, Hsieh SJ (2001) Anal Chim Acta 428:111–120Google Scholar
  19. 19.
    Jocelyn Paré JR, Belanger MR, Stafford SS (1994) Trends Anal Chem 13:176–184Google Scholar
  20. 20.
    Xiong GH, Liang JM, Zou SC, Zhang ZX (1998) Anal Chim Acta 371:97–103Google Scholar
  21. 21.
    Bianco Prevot A, Gulmini M, Zelano V, Pramauro E (2001) Anal Chem 73:3790–3795Google Scholar
  22. 22.
    Eguizabal A Zuloaga O, Etxevarría N, Fernández LA, Madariaga JM (1998) Analyst 123:1679–1684Google Scholar
  23. 23.
    Pino V, Ayala JH, Afonso AM, González V (2001) Int J Environ Anal Chem 81:281–294Google Scholar
  24. 24.
    Pino V, Ayala JH, Afonso AM, González V (2000) J Chromatogr A 869:515–522Google Scholar
  25. 25.
    Padrón Sanz C, Eiguren Fernández A, Sosa Ferrera Z, Santana Rodríguez JJ (2002) J AOAC Int 85:44–49Google Scholar
  26. 26.
    Mahugo Santana C, Sosa Ferrera Z, Santana Rodríguez JJ (2004) Anal Chim Acta 524:133–139Google Scholar
  27. 27.
    Galcerán MT, Jáuregui O (1995) Anal Chim Acta 304:75–84Google Scholar
  28. 28.
    DiCorcia A, Marchese S, Samperi R (1994) J AOAC Int 77:446–453Google Scholar
  29. 29.
    Crespín MA, Gallego M, Varcárcel M (2000) J Chromatogr A 897:279–293Google Scholar
  30. 30.
    Hacothorne SB, Björklund E, Bøwadt S, Mathiasson L (1999) Environ Sci Technol 33:3152–3159Google Scholar
  31. 31.
    Dec J, Bollag J (1997) Soil Sci 162:858–874Google Scholar
  32. 32.
    Kopinke F, Pörschmann J, Stottmeister U (1995) Environ Sci Technol 29:941–950Google Scholar
  33. 33.
    Burford MD, Hawthorne SB, Miller DJ (1993) Anal Chem 65:1497–1505Google Scholar
  34. 34.
    Richter BE, Jones BA, Ezzel JL, Porte NL, Avdanovic N, Pohl C (1996) Anal Chem 68:1033–1039Google Scholar
  35. 35.
    Dupeyron S, Dudermel PM, Counturier D (1997) Analusis 25:286–292Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Cristina Mahugo Santana
    • 1
  • Zoraida Sosa Ferrera
    • 1
  • José J. Santana Rodríguez
    • 1
  1. 1.Department of Chemistry, Faculty of Marine SciencesUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations