Analytical and Bioanalytical Chemistry

, Volume 382, Issue 1, pp 51–58 | Cite as

Molecularly imprinted polymers as tools for the screening of felodipine from dihydropyridine calcium antagonists by pressurized capillary electrochromatography

  • Qiliang Deng
  • Zhihong Lun
  • Hua Shao
  • Chao Yan
  • Ruyu GaoEmail author
Original Paper


A group of structurally similar dihydropyridine calcium antagonists (DHPs) and related compounds were used to simulate a combinatorial library. A molecularly imprinted polymer (MIP) comprising felodipine (FLD) was synthesized in situ inside the capillary for use in the separation of FLD from other DHPs by pressurized electrochromatography (pCEC). To evaluate the feasibility of using the MIP columns for the separation of FLD, parameters including pH, the applied voltages, and the effect of organic modifier were studied. The results indicated that the MIP columns demonstrated better recognition properties over a pH range of 4–6. The efficiency (plates/m) at pH 5.0 for the non-imprinted analytes was 117,000 for thiourea, 18,700 for nicarpidine, 17,300 for nisoldipine, and 14,600 for nifedipine; however, the efficiency for the imprinted analyte FLD was low, as evidenced by the broad peak, yielding only 5,100 plates/m. The column efficiency was also investigated under both micro-HPLC and pCEC conditions.


Pressurized capillary electrochromatography Dihydropyridine calcium antagonists Molecularly imprinted monolithic column 



Financial support of the research by a grant from the National Nature Science Foundation of China (No. 20175010) is gratefully acknowledged.


  1. 1.
    Sellergren B (eds) (2001) Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Wulff G (2002) Stud Surf Sci Catal 141:35–44Google Scholar
  3. 3.
    Shea KJ (1994) Trends Polym Sci 2:166–174Google Scholar
  4. 4.
    Ansell RJ, Kriz D, Mosbach K (1996) Curr Opin Biotechnol 7:89–94CrossRefPubMedGoogle Scholar
  5. 5.
    Turiel E, Martin-Esteban A (2004) Anal Bioanal Chem 378:1876-1886PubMedGoogle Scholar
  6. 6.
    Wulff G (2002) Chem Rev 102:1–27CrossRefPubMedGoogle Scholar
  7. 7.
    Esteban AM (2001) Fresenius J Anal Chem 370:795-802PubMedGoogle Scholar
  8. 8.
    Masqué N, Marcé RM, Borrull F (2001) Trends Anal Chem 20:477–486CrossRefGoogle Scholar
  9. 9.
    Piletsky SA, Panasyuk TL, Piletskaya EV, Nicholls IA, Ulbricht M (1999) J Membr Sci 157:263-278Google Scholar
  10. 10.
    Ulbricht M (2004) J Chromatogr B 804:113-125Google Scholar
  11. 11.
    Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Nature 361:645–647CrossRefPubMedGoogle Scholar
  12. 12.
    Haupt K (2003) Chem Commun 171-178Google Scholar
  13. 13.
    Haupt K, Mosbach K (2000) Chem Rev 100:2495-2504PubMedGoogle Scholar
  14. 14.
    Zimmerman SC, Lemcoff NG (2004) Chem Commun 5-14 Google Scholar
  15. 15.
    Ye L, Haupt K (2004) Anal Bional Chem 378:1887-1897Google Scholar
  16. 16.
    Ramstrom O, Ye L, Krook M, Mosbach K (1998) Anal Commun 35:9–11CrossRefGoogle Scholar
  17. 17.
    Vallano PT, Remcho VT (2000) J Chromatogr A 888:23–34CrossRefPubMedGoogle Scholar
  18. 18.
    Khasawneh MA, Vallano PT, Remcho VT (2001) J Chromatogr A 922:87–97CrossRefPubMedGoogle Scholar
  19. 19.
    Ye L, Yu Y, Mosbach K (2001) Analyst 126:760–765CrossRefPubMedGoogle Scholar
  20. 20.
    Schweitz L, Andersson LI, Nilsson S (1998) J Chromatogr A 817:5-13Google Scholar
  21. 21.
    Vallano PT, Remcho VT (2000) J Chromatogr A 887:125-135PubMedGoogle Scholar
  22. 22.
    Nilsson J, Spégel P, Nilsson S (2004) J Chromatogr B 804:3-12Google Scholar
  23. 23.
    Spégel P, Schweitz L, Nilsson S (2003) Elephoresis 24:3892-3899Google Scholar
  24. 24.
    Lin JM, Nakagama T, Wu XZ, Uchiyama K, Hobo T (1997) Fresenius J Anal Chem 357:130-132Google Scholar
  25. 25.
    Liu ZS, Xu YL, Yan C, Gao RY (2004) Anal Chim Acta 523:243-250Google Scholar
  26. 26.
    Kriz D, Ramstrom O, Mosbach K (1997) Anal Chem 69 345AGoogle Scholar
  27. 27.
    Hjérten S (1985) J Chromatogr 347:191–195CrossRefGoogle Scholar
  28. 28.
    Ramstrom O, Andersson LI, Mosbach K (1993) J Org Chem 58:7562-7564Google Scholar
  29. 29.
    Peter EC, Petro M, Svec F, Fréchet JMJ (1997) Anal Chem 69:3646-3649PubMedGoogle Scholar
  30. 30.
    Jiang T, Jiskra J, Claessens HA, Cramers CA (2001) J Chromatogr A 923:215–227CrossRefPubMedGoogle Scholar
  31. 31.
    Lammerhofer M, Svec F, Fréchet JMJ, Linder W (2001) J Chromatogr A 925:265–277CrossRefPubMedGoogle Scholar
  32. 32.
    Matsui J, Kato T, Takeuchi T, Suzuki M, Yokoyama K, Tamiya E (1993) Anal Chem 65:2223–2224Google Scholar
  33. 33.
    Schweitz L, Andersson LI, Nilsson S (1997) J Chromatogr A 792:401–409CrossRefGoogle Scholar
  34. 34.
    Knox JH (1999) J Chromatogr A 831:3-15Google Scholar
  35. 35.
    Gusev I, Huang X, Horvath C (1999) J Chromatogr A 855:273-290PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Qiliang Deng
    • 1
  • Zhihong Lun
    • 1
  • Hua Shao
    • 1
  • Chao Yan
    • 2
  • Ruyu Gao
    • 1
    Email author
  1. 1.State Key Laboratory of Elemento-Organic ChemistryNankai UniversityTianjinPR China
  2. 2.Unimicro Technologies Inc.PleasantonUSA

Personalised recommendations