Advertisement

Analytical and Bioanalytical Chemistry

, Volume 381, Issue 8, pp 1558–1567 | Cite as

Monolayers of photosystem II on gold electrodes with enhanced sensor response—effect of porosity and protein layer arrangement

  • J. Maly
  • J. Krejci
  • M. Ilie
  • L. Jakubka
  • J. Masojídek
  • R. Pilloton
  • K. Sameh
  • P. Steffan
  • Z. Stryhal
  • M. Sugiura
Original Paper

Abstract

Mass transport of the bulk of the analyte to the electrode and through the bioactive layer can be significantly improved by use of the nanoelectrode array and defined arrangement of protein film. This phenomenon has been studied by (i) atomic-force microscopy, (ii) electrochemical measurements of PSII activity, and (iii) digital simulations for an oriented monolayer of histidine-tagged photosystem II (PSII) immobilized on nitrilotriacetic acid (NTA)-modified gold electrodes. The output signal of the electrochemical biosensor is controlled by (i) mass transport from the bioactive layer to electrode and (ii) mass transport between the bulk of the analyte and the electrode. Mass transport through the bioactive layer was electrochemically studied for PSII self-assembled on gold screen-printed electrodes. A densely packed monolayer of PSII has a significant shielding effect toward the diffusion of redox mediator duroquinone (DQ). Mass transport to the planar electrode surface was improved by co-immobilization of bovine-serum albumin (BSA) as spacer biomolecule in the monolayer of PSII. Correlation between the electrochemical properties and surface arrangement of the resulting protein films was clearly observable and confirmed the improved mass-transport properties of structured enzyme monolayers. On the basis of this observation, the application of a bottom-up approach for improvement of electrode performance was proposed and digitally simulated for an infinite array of electrodes ranging in diameter from 50 nm to 5 μm. The nanoelectrode array, with the optimum time window selected for measurements, enables enhancement of mass transport between the bulk of the analyte and the macroelectrode by a factor of up to 50 in comparison with “classical” planar electrodes. Use of a time window enables minimization of crosstalk between individual electrodes in the array. The measurements require methods which suppress the double-layer capacity.

Keywords

Protein monolayer Photosystem II Nanostructured electrodes Biosensors Mass transport 

Abbreviations

AuWE

Gold working electrode

BSA

Bovine serum albumin

Chl

Chlorophyll

CMLH

Nα,Nα-Bis(carboxymethyl)-l-lysine hydrate

DQ

Tetramethyl-p-benzoquinone

DM

Dodecylmaltoside

GA

Glutaraldehyde

His-PSII

Histidine-tagged photosystem II

LED

Light-emitting diode

ME

Macroelectrode consisting of an array of nanoelectrodes

MES

2-(N-Morpholino)ethanesulfonic acid

NE

Nanoelectrode

NTA

Nitrilotriacetic acid

NTA-AuWE

Gold working electrode modified with SAM layer of nitrilotriacetic acid

PEO

1-Cyclohexyl-3-(2-morpholinoethyl)carbodiimidemetho-p-toluene sulfonate

PSII

Photosystem II

PSII-NTA-AuWE

His-PSII immobilized on NTA-AuWE

SAM

Self-assembled monolayer

PB

Phosphate buffer

Notes

Acknowledgments

This work was supported by EU project Growth GRD1-2001-41831 “Microprotein”, by project 522/03/0659 of the Grant Agency of the Czech Republic, by project “IBIS” of the Czech Ministry of Industry and Trade, and by the COSMIC Project (ENEA Target Project on Biosensors and Bioelectronics).

References

  1. 1.
    Koblizek M, Maly J, Masojidek J, Komenda J, Kucera T, Giardi MT, Mattoo AK, Pilloton R (2002) Biotech Bioeng 78:110–116Google Scholar
  2. 2.
    Arica MY, Yavuz H, Denizli A (2001) J Appl Polym Sci 81:2702–2710Google Scholar
  3. 3.
    Mutlu S, Mutlu M, Pipkin E (1998) Biochem Eng J 1:39–43Google Scholar
  4. 4.
    Morrin A, Guzman A, Killard AJ, Pingarron JM, Smyth MR (2003) Biosens Bioelectron 18:715–720Google Scholar
  5. 5.
    Ganapathy R, Manolache S, Sarmadi M, Simonsick WJ Jr, Denes F (2000) J Appl Polym Sci 78:1783–1796Google Scholar
  6. 6.
    Naal Z, Park JH, Bernhard S, Shapleigh JP, Batt CA, Abrua HD (2002) Anal Chem 74:140–148Google Scholar
  7. 7.
    Richins RD, Mulchandi A, Chen W (2000) Biotechnol Bioeng 69:591–596Google Scholar
  8. 8.
    Darder M, Casero E, Pariente F, Lorenzo E (2000) Anal Chem 72:3784–3792Google Scholar
  9. 9.
    Wang Ch, Hsiue G (1993) J Appl Polym Sci 50:1141–1149Google Scholar
  10. 10.
    Zhang S, Zhao H, John R (2000) Anal Chim Acta 421:175–187Google Scholar
  11. 11.
    Barton AC, Collyer SD, Davis F, Gornall DD, Law KA, Lawrence ECD, Mills DW, Myler S, Pritchard JA, Thompson M, Higson SPJ (2004) Biosens Bioelectron 20:328–337Google Scholar
  12. 12.
    Myler S, Davis F, Collyer SD, Higson SPJ (2004) Biosens Bioelectron 20:408–412Google Scholar
  13. 13.
    Rieger PH (1987) Electrochemistry. Prentice–Hall, Englewood Cliffs, NJ 07632Google Scholar
  14. 14.
    Bard AJ, Faullkner LR (1980) Electrochemical methods—fundamentals and applications. WileyGoogle Scholar
  15. 15.
    Crank J (1998) The mathematics of diffusion, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  16. 16.
    Thormann W, Bixler JW, Mann TF, Bond AMJ (1988) Electroanal Chem Interfacial Electrochem 241:1–15Google Scholar
  17. 17.
    Bruckenstein S, Janiszewska J (2002) J Electroanal Chem 538/539:3–12Google Scholar
  18. 18.
    Scharifker BR (1988) J Electroanal Chem Interfacial Electrochem 240:61–76Google Scholar
  19. 19.
    Morf WE (1997) Anal Chim Acta 341:121–127Google Scholar
  20. 20.
    Soh KL, Kang WP, Davidson JL, Wong YM, Wisitsora-at A, Swain G, Cliffel DE (2003) Sens Actuators B 91:39–45Google Scholar
  21. 21.
    Cheng IF, Whiteley LD, Martin CR (1989) Anal Chem 61:762–766Google Scholar
  22. 22.
    Schwarz J, Kaden H, Enseleit U (2000) Electrochem Commun 2:606–611Google Scholar
  23. 23.
    Sugiura M, Inoue Y (1999) Plant Cell Physiol 40:1219–1231Google Scholar
  24. 24.
    Maly J, Illiano E, Sabato M, De Francesco M, Pinto V, Masci A, Masci D, Masojidek J, Sugiura M, Franconi R, Pilloton R (2002) Mater Sci Eng C 22:257–261Google Scholar
  25. 25.
    Bellis GD, Caramenti G, Ilie M, Cianci E, Foglietti V (2003) J Optoelectron Adv Mater 5:89–96Google Scholar
  26. 26.
    Bacon K. In: Advances in photosynthesis, vol 10, Photobiochemistry and photobiophysics. Kluwer Academic, Dordrecht, 2001, pp 278–279Google Scholar
  27. 27.
    Maly J, Di Meo C, De Francesco M, Masci A, Masojidek J, Sugiura M, Volpe A, Pilloton R (2004) Anal Lett 37:1–12Google Scholar
  28. 28.
    Maly J, Masci A, Masojidek J, Sugiura M, Pilloton R (2004) Bioelectrochemistry 63:271–275Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. Maly
    • 1
  • J. Krejci
    • 2
  • M. Ilie
    • 3
  • L. Jakubka
    • 4
  • J. Masojídek
    • 5
  • R. Pilloton
    • 2
  • K. Sameh
    • 4
  • P. Steffan
    • 4
  • Z. Stryhal
    • 1
  • M. Sugiura
    • 6
  1. 1.Department of BiologyUniversity of Jan Evangelista PurkyněÚstí nad LabemCzech Republic
  2. 2.Krejčí EngineeringTišnovCzech Republic
  3. 3.ENEASP061RomaItaly
  4. 4.Department of Microelectronics, CES Centre of Electrochemical Sensors, Joint Research Activity of BVT Technologies and University of TechnologyFEECBrnoCzech Republic
  5. 5.Institute of MicrobiologyAcademy of SciencesTřeboňCzech Republic
  6. 6.Osaka Prefecture UniversityOsakaJapan

Personalised recommendations