Analytical and Bioanalytical Chemistry

, Volume 381, Issue 8, pp 1596–1603 | Cite as

Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry

  • Karima BenkheddaEmail author
  • Vladimir N. Epov
  • R. Douglas Evans
Original Paper


A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP–mass spectrometry (SF-ICP–MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L−1, respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86–5.50 and 0.176–2.35 ng L−1, respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82–1.04% (RSD) was obtained for 235U/238U at low ng L−1 levels, using the FI transient signal approach.


Uranium Thorium Flow injection Urine SF-ICP–MS Isotope ratios 



The authors acknowledge CBRN Research and Technology Initiative (CRTI) and the National Sciences and Engineering Research Council of Canada (NSERC) for the financial support. We also would like to thank D. Brownell for the technical assistance and all the volunteers for their kind cooperation.


  1. 1.
    Pappas RS, Ting BG, Jarett JM, Paschal DC, Caudill SP, Miller DT (2002) J Anal At Spectrom 17:131–134Google Scholar
  2. 2.
    Gwiazda RH, Squibb K, McDiarmid M, Smith D (2004) Health Phys 86:12–18Google Scholar
  3. 3.
    Kerl W, Becker JS, Dietz H-J, Dannecker W (1997) Fresenius J Anal Chem 359:407–409Google Scholar
  4. 4.
    Krystek P, Ritsema R (2002) J Anal Bioanal Chem 374:226–229CrossRefPubMedGoogle Scholar
  5. 5.
    Bandura DR, Baranov VI, Tanner SDJ (2000) Anal At Spectrom 15:921–928Google Scholar
  6. 6.
    Vanhaecke F, Moens L (2004) Anal Bioanal Chem 378:232–240Google Scholar
  7. 7.
    Stürup S (2004) Anal Bioanal Chem 378:237–282Google Scholar
  8. 8.
    Walczyk T (2004) Anal Bioanal Chem 378:229–231Google Scholar
  9. 9.
    Lober A, Karpas Z, Halicz L (1996) Anal Chim Acta 334:295–301CrossRefGoogle Scholar
  10. 10.
    Vanhaecke F, Stevens G, De Wannemacker G, Moens L (2003) Can J Anal Sci Spectrosc 48:251–257Google Scholar
  11. 11.
    Haldiman M, Baduraux M, Eastgate A, Froidevaux P, O’Donovan S, Von Gunten D, Zoller O (2001) J Anal At Spectrom 16:1364–1369Google Scholar
  12. 12.
    Becker JS, Burow M, Boulyga SF, Pickhardt C, Hille R, Ostapczuk P (2002) At Spectrosc 23:177–182Google Scholar
  13. 13.
    Al-Jundi J, Werner E, Roth P, Hollriegl V, Wendler I, Schramel P (2004) J Environ Radioact 71:61–70Google Scholar
  14. 14.
    TrešeI, De Wannemacker G, Quétel CR, Petrov I, Vanhaecke F, Moens L, Taylor PDP (2004) Environ Sci Technol 38:581–586CrossRefPubMedGoogle Scholar
  15. 15.
    Tolmachyov SYu, Kuwabara J, Noguchi H (2004) J Radioanal Nuclear Chem 261: 125–131Google Scholar
  16. 16.
    Egorov OB, O’Hara MJ, Farmer III OT, Grate JW (2001) Analyst 126:1594–1601Google Scholar
  17. 17.
    Nelms SM, Quétel CR, Prohaska T, Vogl J, Taylor PDP (2001) J Anal At Spectrom 16:333–338Google Scholar
  18. 18.
    Quétel CR, Prohaska T, Hamester M, Kerl W, Taylor PDP (2000) J Anal At Spectrom 15:353–358Google Scholar
  19. 19.
    Ingle CP, Sharp BL, Horstwood MSA, Parrish RR, Lewis DJ (2003) J Anal At Spectrom 18:219–229Google Scholar
  20. 20.
    Heumann KG, Gallus SM, Rädlinger G, Vogl J (1998) J Anal At Spectrom 13: 001–1008Google Scholar
  21. 21.
    Horwitz EP, Chiarizia R, Dietz ML, Diamond H (1993) Anal Chim Acta 281:361–372Google Scholar
  22. 22.
    Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Essling AM, Graczyk D (1992) Anal Chim Acta 266:25–37Google Scholar
  23. 23.
    Magara M, Sakakibara T, Kurosawa S, Takahashi M, Sakurai S, Hanzawa Y, Esaka F, Watanabe K, Usuda S (2002) J Anal At Spectrom 17:1157–1160Google Scholar
  24. 24.
    Günter-Leopold I, Wernli B, Kopajtic Z, Günter D (2004) Anal Bioanal Chem 378:241–249Google Scholar
  25. 25.
    Carrión MC, Andrés JR, Rubí JAM, Emteborg H (2003) J Anal At Spectrom 18:437–443Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Karima Benkhedda
    • 1
    • 3
    Email author
  • Vladimir N. Epov
    • 1
    • 2
  • R. Douglas Evans
    • 1
  1. 1.Environmental Resources StudiesTrent UniversityPeterboroughCanada
  2. 2.Vinogradov Institute of Geochemistry SB RASIrkutskRussia
  3. 3.Nutrition Research Division, 2203C Banting Research CentreHealth CanadaOttawaCanada

Personalised recommendations