Analytical and Bioanalytical Chemistry

, Volume 382, Issue 1, pp 22–27 | Cite as

The detection of nitrated tyrosine in neuropeptides: a MALDI matrix-dependent response

  • Sarah A. Sheeley
  • Stanislav S. Rubakhin
  • Jonathan V. Sweedler
Original Paper

Abstract

Neuropeptides are a diverse class of signaling molecules that typically have one or more posttranslational modifications. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an effective tool for identification and characterization of neuropeptides from samples as small as individual neurons. However, the detection of one particular posttranslational modification—nitrotyrosine—has been problematic because of the lability of the nitro group of nitrotyrosine under MALDI-MS conditions. The detection of nitrated tyrosine in peptide standards was dependent on the MALDI matrix used for the analysis. Specifically, sinapinic acid was the optimum matrix tested to observe this modification while it was not consistently detected with matrices such as 2,5-dihydroxybenzoic acid. Using the optimized procedures, several identified nitric-oxide-synthase positive neurons from Lymnaea stagnalis were tested to determine if the neuropeptides present were nitrated. In all cases, the nitrated form of the neuropeptide was not observed. The dependence on the sample-preparation procedures of observing this particular chemical modification demonstrates the need for careful selection of sample-preparation methods with MALDI or the use of other ionization methods.

Keywords

Nitration Neuropeptides Post-translational modifications MALDI-MS Matrix dependence 

References

  1. 1.
    Cappelletti G, Tedeschi G, Maggioni MG, Negr A, Nonnis S, Maci R (2004) FEBS Lett 562:35–39PubMedGoogle Scholar
  2. 2.
    Zhan X, Desiderio DM (2004) Biochem Biophys Res Commun 325:1180–1186PubMedGoogle Scholar
  3. 3.
    Bolan EA, Gracy KN, Chan J, Trifiletti RR, Pickel VM (2000) J Neurosci 20:4798–4808PubMedGoogle Scholar
  4. 4.
    Cruz L, Moroz LL, Gillette R, Sweedler JV (1997) J Neurochem 69:110–115PubMedGoogle Scholar
  5. 5.
    Floyd PD, Moroz LL, Gillette R, Sweedler JV (1998) Anal Chem 70:2243–2247PubMedGoogle Scholar
  6. 6.
    Korneev SA, Piper MR, Picot J, Phillips R, Korneeva E, O’Shea M (1998) J Neurobiol 35:65–76PubMedGoogle Scholar
  7. 7.
    Moroz LL (2000) Microsc Res Tech 49:557–569PubMedGoogle Scholar
  8. 8.
    Moroz LL, Gillette R, Sweedler JV (1999) J Exp Biol 202:333–341PubMedGoogle Scholar
  9. 9.
    Perry SJ, Dobbins AC, Schofield MG, Piper MR, Benjamin PR (1999) Eur J Neurosci 11:655–662PubMedGoogle Scholar
  10. 10.
    Santama N, Wheeler CH, Burke JF, Benjamin PR (1994) J Comp Neurol 342:335–351PubMedGoogle Scholar
  11. 11.
    Burlingame AL, Boyd RK, Gaskell SJ (1998) Anal Chem 70:647R–716RPubMedGoogle Scholar
  12. 12.
    Floyd PD, Li LJ, Rubakhin SS, Sweedler JV, Horn CC, Kupfermann I, Alexeeva VY, Ellis TA, Dembrow NC, Weiss KR, Vilim FS (1999) J Neurosci 19:7732–7741PubMedGoogle Scholar
  13. 13.
    Hummon AB, Corbin RW, Sweedler JV (2003) Trends Anal Chem 22:515–521Google Scholar
  14. 14.
    Jimenez CR, Li KW, Dreisewerd K, Spijker S, Kingston R, Bateman RH, Burlingame AL, Smit AB, van Minnen J, Geraerts WP (1998) Biochemistry 37:2070–2076PubMedGoogle Scholar
  15. 15.
    Li L, Garden RW, Romanova EV, Sweedler JV (1999) Anal Chem 71:5451–5458PubMedGoogle Scholar
  16. 16.
    Rubakhin SS, Greenough WT, Sweedler JV (2003) Anal Chem 75:5374–5380PubMedGoogle Scholar
  17. 17.
    Li L, Garden RW, Sweedler JV (2000) Trends Biotechnol 18:151–160PubMedGoogle Scholar
  18. 18.
    Sarver A, Scheffler NK, Shetlar MD, Gibson BW (2001) J Am Soc Mass Spectrom 12:439–448PubMedGoogle Scholar
  19. 19.
    Petersson A-S, Steen H, Kalume DE, Caidahl K, Roepstorff P (2001) J Mass Spectrom 36:616–625PubMedGoogle Scholar
  20. 20.
    Mirza UA, Chait BT, Lander HM (1995) J Biol Chem 270:17185–17188PubMedGoogle Scholar
  21. 21.
    Curcuruto O, Rovatti L, Pastorino AM, Hamdan M (1999) Rapid Commun Mass Spectrom 13:156–163Google Scholar
  22. 22.
    Moroz LL, Gillette R (1995) Acta Biol Hung 46:169–182PubMedGoogle Scholar
  23. 23.
    Garden R, Moroz L, Moroz T, Shippy S, Sweedler J (1996) J Mass Spectrom 10:1126–1130Google Scholar
  24. 24.
    Ducrocq C, Dendane M, Laprevote O, Serani L, Das BC, Bouchemalchibani N, Doan BT, Gillet B, Karim A, Carayon A, Payen D (1998) Eur J Biochem 253:146–153PubMedGoogle Scholar
  25. 25.
    Armstrong DW, Zhang L-K, He L, Gross ML (2001) Anal Chem 73:3679–3686PubMedGoogle Scholar
  26. 26.
    Martinez N, Junquera E, Aicart E (1999) Phys Chem Chem Phys 1:4811–4817Google Scholar
  27. 27.
    Merdy P, Guillon E, Aplincourt M, Duomonceau J (2000) J Chem Res Synop 2:76–77Google Scholar
  28. 28.
    Ohba Y, Koto N, Hamase K, Zaitsu K (2000) Anal Sci 16:659–661Google Scholar
  29. 29.
    Akhter S, Green JR, Root P, Thatcher G, Mutus B (2003) Nitric Oxide 8:214–221PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Sarah A. Sheeley
    • 1
  • Stanislav S. Rubakhin
    • 1
  • Jonathan V. Sweedler
    • 1
  1. 1.Department of Chemistry and the Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations