Analytical and Bioanalytical Chemistry

, Volume 382, Issue 2, pp 275–282 | Cite as

Analysis of organic colouring and binding components in colour layer of art works

  • S. KuckovaEmail author
  • I. Nemec
  • R. Hynek
  • J. Hradilova
  • T. Grygar
Special Issue Paper


Two methods of analysis of organic components of colour layers of art works have been tested: IR microspectroscopy of indigo, Cu-phthalocyanine, and Prussian blue, and MALDI-TOF-MS of proteinaceous binders and a protein-containing red dye. The IR spectra distortion common for smooth outer surfaces and polished cross sections of colour layer of art works is suppressed by reflectance measurement of microtome slices. The detection limit of the three blue pigments examined is ~0.3 wt% in reference colour layers in linseed oil binder with calcite as extender and lead white as a drying agent. The sensitivity has been sufficient to identify Prussian blue in repaints on a Gothic painting. MALDI-TOF-MS has been used to identify proteinaceous binders in two historical paintings, namely isinglass (fish glue) and rabbit glue. MALDI-TOF-MS has also been proposed for identification of an insect red dye, cochineal carmine, according to its specific protein component. The enzymatic cleavage with trypsin before MALDI-TOF-MS seems to be a very gentle and specific way of dissolution of the colour layers highly polymerised due to very long aging of old, e.g. medieval, samples.


Proteins Binders Blue dyes Painting MALDI 



The work was supported by Grant Agency of Czech Republic (project number 203/04/2091). We thank to restorers K. Stretti, D. Frank, and J. Hamsík (Academy of Fine Arts in Prague, Czech Republic) for providing samples, Tatyana Bayerova (University of Applied Arts, Vienna, Austria), for an inspiring discussion about IR spectroscopy in artwork analysis, and Ladislava Kratinova and Jindrich Martinek (First Faculty of Medicine, Charles University, Prague, Czech Republic) for cutting thin layers.


  1. 1.
    Melessanaki K, Papadakis V, Balas C, Anglos D (2001) Spectrochim Acta B 56:2337–2346Google Scholar
  2. 2.
    Burgio L, Clark RJH, Theodoraki K (2003) Spectrochim Acta A 59:2371–2389Google Scholar
  3. 3.
    Burgio L, Clark RJH (2000) J Raman Spectrosc 31:395–401Google Scholar
  4. 4.
    Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G (2000) Anal Chim Acta 407:261–274Google Scholar
  5. 5.
    Ackacha MA, Połeć-Pawlak K, Jarosz M (2003) J Sep Sci 26:1028–1034Google Scholar
  6. 6.
    Puchalska M, Orlinska M, Ackacha MA, Połeć-Pawlak K, Jarosz M (2003) J Mass Spectrom 38:1252–1258Google Scholar
  7. 7.
    Maier MS, Parera SD, Seldes AM (2004) Int J Mass Spectrom 232:225–229Google Scholar
  8. 8.
    Kuckova S, Grygar T, Hradil T, Hradilova J (2003) J Solid State Electrochem 7:706–713Google Scholar
  9. 9.
    Novotna P, Pacakova V, Bosakova Z, Stulik K (1999) J Chromatogr A 863:235–241Google Scholar
  10. 10.
    Lang PL, Orna MV, Richwine LJ, Mathews TF, Nelson RS (1992) Microchem J 46:234–248Google Scholar
  11. 11.
    Van den Berg JDJ, Vermist ND, Carlyle L, Holcapek M, Boon JJ (2004) J Sep Sci 27:181–199Google Scholar
  12. 12.
    Spyros A, Anglos D (2004) Anal Chem 76:4929–4936Google Scholar
  13. 13.
    Keune K, Boon JJ (2004) Anal Chem 76:1374–1385Google Scholar
  14. 14.
    Pitthard V, Finch P, Bayerová T (2004) J Sep Sci 27:200–208Google Scholar
  15. 15.
    Regert M (2004) J Sep Sci 27:244–254Google Scholar
  16. 16.
    Colombini MP, Modungo F (2004) J Sep Sci 27:147–160Google Scholar
  17. 17.
    De la Cruz-Canizares J, Doménech-Carbó MT, Gimeno-Adelantado JV, Mateo-Castro R, Bosch-Reig F (2004) J Chromatogr A 1025:277–285Google Scholar
  18. 18.
    Carbini M, Stevanato R, Rovea M, Traldi P, Favretto D (1996) Rapid Commun Mass Spectrom 10:1240–1242Google Scholar
  19. 19.
    Chiavari G, Gandini N, Russo P, Fabbri D (1998) Chromatographia 47:420–426Google Scholar
  20. 20.
    Bonaduce I, Colombini MP (2003) Rapid Commun Mass Spectrom 17:2523–2527Google Scholar
  21. 21.
    Challinor JM (2001) J Anal Appl Pyrol 61:3–34Google Scholar
  22. 22.
    Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F, Doménech-Carbó A, Casas-Catalán MJ, Osete-Cortina L, De la Cruz-Canizares J, Doménech-Carbó MT (2001) Fresenius J Anal Chem 369:642–646Google Scholar
  23. 23.
    Makes F (1988) Enzymatic consolidation of the portrait of Rudolph II as “Vertumnus” by Giuseppe Arcimboldo with a new multi-enzyme preparation isolated from Antarctic krill (Euphausia superba), Acta Universitatis Gothoburgensis, SwedenGoogle Scholar
  24. 24.
    Beutel S, Klein K, Knobbe G, Königfeld P, Petersen K, Ulber R, Scheper T (2002) Biotechnol Bioeng 80:13–21Google Scholar
  25. 25.
    Hynek R, Kuckova S, Hradilova J, Kodicek M (2004) Rapid Commun Mass Spectrom 18:1–5Google Scholar
  26. 26.
    Ma Y, Lu Y, Zeng H, Ron D, Mo W, Neubert TA (2001) Rapid Commun Mass Spectrom 15:1693–1700Google Scholar
  27. 27.
    Berrie HB (1997) Prussian blue. In: Fitzhugh EW (ed) Artist’s pigments, a handbook of their history and characteristics, chap. 7, vol 3. National Gallery of Art, New York, pp 191–217Google Scholar
  28. 28.
    Newman R (1979) JAIC 19:42–62Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. Kuckova
    • 1
    • 2
    • 3
    • 4
    Email author
  • I. Nemec
    • 1
  • R. Hynek
    • 2
  • J. Hradilova
    • 3
  • T. Grygar
    • 4
  1. 1.Department of Analytical ChemistryCharles University12840 Prague 2Czech Republic
  2. 2.Faculty of Food and Biochemical TechnologyInstitute of Chemical Technology16628 Prague 6Czech Republic
  3. 3.Academy of Fine Arts in Prague17022 Prague 7Czech Republic
  4. 4.Institute of Inorganic Chemistry25068 RezCzech Republic

Personalised recommendations