Analytical and Bioanalytical Chemistry

, Volume 382, Issue 2, pp 269–274 | Cite as

Earth pigments in painting: characterisation and differentiation by means of FTIR spectroscopy and SEM-EDS microanalysis

Special Issue Paper


Analytical characterisation of natural earths (ochres, siennas, umbers and green earths) has been carried out using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) coupled to an energy dispersive X-Ray spectrometer (EDS). The study of these pigments, which are found in works of art, is very important since it can shed light on their source or the pictorial technique used. FTIR spectroscopy is suitable for the identification and differentiation of ochres and siennas. According to the matrix of the sample, FTIR allows the classification of ochres into ochres containing kaolinite and ochres containing sulphate. One of the goals of this research has been to establish a relationship between the matrix and the source of the samples tested. SEM-EDS is probably a better technique than FTIR for characterising umbers and green earths since they do not exhibit significant differences when FTIR studies are performed.


Ochres Siennas Umbers and green earths SEM-EDS FTIR Works of art 



The authors would like to thank the Serveis Científico-tècnics (SCT) de la Universitat de les Illes Balears (UIB).


  1. 1.
    Feller RL (ed) (1986) Artists’ pigments, vol 1. Cambridge University Press, LondonGoogle Scholar
  2. 2.
    Roy A (ed) (1993) Artists’ pigments, vol 2. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Fitzhugh EW (ed) (1997) Artists’ pigments, vol 3. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Hradil D, Grygar T, Hradilová J, Bezdička P (2003) Appl Clay Sci 22:223Google Scholar
  5. 5.
    Clark RJH (2002) CR Acad Sci II C 5:7Google Scholar
  6. 6.
    Bikiaris D, Daniilia S, Sotiropoulou S, Katsimbiri O, Pavlidou E, Moutsatsou A, Chryssoulakis Y (1999) Spectrochim Acta Part A 56:3Google Scholar
  7. 7.
    Bruni S, Cariati F, Casadio F, Toniolo L (1999) Spectrochim Acta Part A 55:1371Google Scholar
  8. 8.
    Edreira MC, Feliu MJ, Fernández-Lorenzo C, Martín J (2003) Talanta 59:1117Google Scholar
  9. 9.
    Mazzocchin GA, Agnoli F, Salvadori M (2004) Talanta 64:732Google Scholar
  10. 10.
    Daniilia S, Sotiropoulou S, Bikiaris D, Salpistis C, Karagiannis G, Chryssoulakis Y, Price BA, Carlson JH (2000) J Cult Heritage 1:91Google Scholar
  11. 11.
    Colombini MP, Carmignani A, Modugno F, Frezzato F, Olchini A, Brecoulaki H, Vassilopoulou V, Karkanas P (2004) Talanta 63:839CrossRefGoogle Scholar
  12. 12.
    Grigar T, Hradilová J, Hradil D, Bezdiéka P, Bakardjieva S (2003) Anal Bional Chem 375:1154Google Scholar
  13. 13.
    Wouters J, Maes L, Germer R (1990) Stud Conserv 35:89Google Scholar
  14. 14.
    Clark RJH, Curri ML (1998) J Mol Struct 440:110Google Scholar
  15. 15.
    Genestar C, Pons C (2004) Thermochim Acta 413:185Google Scholar
  16. 16.
    Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrences and uses. VCH, New YorkGoogle Scholar
  17. 17.
    Konta J (1995) Appl Clay Sci 10:275Google Scholar
  18. 18.
    Cennini C (1988) El libro del arte. Akal, MadridGoogle Scholar
  19. 19.
    Harley RD (1982) Artists’ pigments c. 1600–1835. A study in english documentary sources. Butterworths Scientific, LondonGoogle Scholar
  20. 20.
    Gettens RJ, Stout GL (1966) In: Painting materials, a short encyclopaedia. Dover, New York, p 134Google Scholar
  21. 21.
    Casellato U, Vigato PA, Russo U, Matteini M (2000) J Cult Heritage 1:217Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Departament of ChemistryUniversity of the Balearic Islands (UIB)Palma de MallorcaSpain

Personalised recommendations