Analytical and Bioanalytical Chemistry

, Volume 382, Issue 2, pp 259–268 | Cite as

Identification of natural dyes used in works of art by pyrolysis–gas chromatography/mass spectrometry combined with in situ trimethylsilylation

  • María José Casas-Catalán
  • María Teresa Doménech-CarbóEmail author
Special Issue Paper


Samples of four natural dyes from different organic families—natural madder (anthraquinonoid), curcuma (curcuminoid), saffron (carotenoid) and indigo (indigotic)—were analysed using a new procedure based on pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS), which includes the on-line derivatisation of the natural dyes using hexamethyldisilazane (HMDS). In addition, a previous procedure involving the addition of a 10% H2SO4 aqueous solution to the dye and further separation with ethyl acetate has been tested. This procedure enhances the sensitivity of the method by extracting the colouring compounds from the rest of the compounds present in the natural dye. Two possible derivatising reagents—HMDS and tetramethylammonium hydroxide (TMAH)—were compared in order to assess their effectiveness in the proposed method. Characteristic peaks from trimethylsilyl derivatives of alizarin, quinizarin, xanthopurpurin and purpurin were obtained for madder; peaks from safranal, isophorone and trimethylsilyl derivative of crocetin for saffron; peaks from 4-(4-hydroxy-3-methoxy)phenyl-3-buten-2-one and 4-(4-hydroxy-3-methoxy)phenyl-2-butanone, which are primary pyrolysis products of curcuma, and peaks from indole, 2-methylindole and 2,3-dihydroindol-2-one, which are primary pyrolysis products of indigo, among others, were obtained. The reported procedure leads to the unambiguous identification of the four studied dyes from solid samples formed by individual dyes.


Madder Saffron Curcuma Indigo Py–GC/MS Hexamethyldisilazane Tetramethylammonium hydroxide 



Financial support is gratefully acknowledged from the “I+D+I MCYT” Project BQU2001-2776-C03-01 and “Generalitat Valenciana I+D” Project GV04B-441.

Supplementary material

216_2005_3064_esm.pdf (152 kb)
PDF 153 KB


  1. 1.
    Low MJD, Baer NS (1977) Stud Conserv 22:116–128Google Scholar
  2. 2.
    Shearer JC, Peters DC, Hoepfner DC, Newton T (1983) Anal Chem 55:874A–880AGoogle Scholar
  3. 3.
    Taylor GW (1983) Stud Conserv 28:153–160Google Scholar
  4. 4.
    Edwards HGM, Farwell DW, Quye AJ (1997) Raman Spectrosc 28:243–249Google Scholar
  5. 5.
    Bell SEJ, Bourguignon ESO, Dennis AC, Fields JA, McGarvey JJ, Seddon KR (1999) Anal Chem 72:234–239Google Scholar
  6. 6.
    Edwards HGM, De Oliveira LFC, Nesbitt M (2003) Analyst 128:82–87Google Scholar
  7. 7.
    Vandenabeele P, Moens L (2003) Analyst 128:187–193Google Scholar
  8. 8.
    Guichard V, Guineau B (1990) Identification de colorants organiques naturels dans des fragments de peintures murales de l’Antiquité. CNRS, ParisGoogle Scholar
  9. 9.
    Miliani C, Romani A, Favaro G (1998) Spectrochim Acta A 54A:581–588Google Scholar
  10. 10.
    Doménech-Carbó A, Doménech-Carbó MT, Sauri-Peris MC, Gimeno-Adelantado JV, Bosch-Reig F (2003) Anal Bioanal Chem 375:1169–1175Google Scholar
  11. 11.
    Grygar T, Kucková S, Hradil D, Hradilová D (2003) J Solid State Electrochem 7:706–713Google Scholar
  12. 12.
    Scott DA, Khandekar N, Schilling MR, Turner N, Taniguchi Y, Khanjian H (2001) Stud Conserv 43:93–108Google Scholar
  13. 13.
    Hofenk de Graaff JH, Roelofs WGTh (1990) Natural dyestuffs; history of technology and scientific research. In: Pigments and dyes of antiquity and the Middle Ages. CNRS, Paris, pp 217–226Google Scholar
  14. 14.
    Nowik W (1996) Analusis 24:37–40Google Scholar
  15. 15.
    Orska-Gawrys J, Surowiec I, Kehl J, Rejniak H, Urbaniak-Walczak K, Trojanowicz M (2003) J Chromatogr A 989:239–248Google Scholar
  16. 16.
    Szostek B, Orska-Gawrys J, Surowiec I, Trojanowicz M (2003) J Chromatogr A 1012:179–192Google Scholar
  17. 17.
    Puchalska M, Orlinska M, Ackacha MA, Polec-Pawlak K, Jarosz M (2003) J Mass Spectrom 38:1252–1258Google Scholar
  18. 18.
    Ackacha MA, Polec-Pawlak K, Jarosz M (2003) J Sep Sci 26:1028–1034Google Scholar
  19. 19.
    Quye A, Wouters J, Boon JJ (1998) Preprints of 11th Triennial Meeting of ICOM Committee for Conservation, 1–6 September 1996, Edinburgh, UK, vol 2, pp 704–713Google Scholar
  20. 20.
    Henriksen LM, Kjøsen H (1983) J Chromatogr 258:252–257Google Scholar
  21. 21.
    Fabbri D, Chiavari G, Ling H (2000) J Anal Appl Pyrol 56:167–178Google Scholar
  22. 22.
    Chiavari G, Fabbri D, Prati S (2001) J Chromatogr A 922:235–241Google Scholar
  23. 23.
    Chiavari G, Fabbri D, Prati S (2001) Chromatographia 53:311–314Google Scholar
  24. 24.
    Chiavari G, Fabbri D, Prati S (2001) Anal Chim Acta 449:271–280Google Scholar
  25. 25.
    Prati S, Smith S, Chiavari G (2004) Chromatographia 59:227–231Google Scholar
  26. 26.
    Gettens RJ, Stout GL (1966) Painting materials. a short encyclopedia. Dover Publications Inc., New YorkGoogle Scholar
  27. 27.
    Matteini M, Moles A (1989) La Chimica nel Restauro. I materiali dell’arte pittorica. Nardini, FirenzeGoogle Scholar
  28. 28.
    Cennini C (1988) El libro del arte. Akal, MadridGoogle Scholar
  29. 29.
    Mills JS, White R (1987) The organic chemistry of museum objects. Butterworths, LondonGoogle Scholar
  30. 30.
    Bender M (1947) J Chem Educ 24:2–15Google Scholar
  31. 31.
    Hiscox GD, Hopkins AA (1997) El recetario industrial G. Gili, MéxicoGoogle Scholar
  32. 32.
    Mayer R (1993) The artist’s handbook of materials and techniques, 2nd edn. Hermann Blume, MadridGoogle Scholar
  33. 33.
    Palomino A (1947) El museo pictórico y escala óptica. Aguilar, MadridGoogle Scholar
  34. 34.
    Leonardo da Vinci (1995) Tratado de Pintura, 3rd edn. Akal, Madrid, pp 426–429Google Scholar
  35. 35.
    Turco A (1996) Coloritura, verniciatura e laccatura del legno. 3rd edn. Hoepli, MilanoGoogle Scholar
  36. 36.
    Lampe V, Milobedzka J (1913) Ber Dtsch Chem Ges 46:2235; cited by Roughley PJ, Whiting DA (1971) Tetrahedron Lett 12:3471–3746Google Scholar
  37. 37.
    Kiuchi F, Goto Y, Sugimoto N, Akao N, Kondo K, Tsuda Y (1993) Chem Pharm Bull 41:1640–1643Google Scholar
  38. 38.
    Kelkar NC, Sanjeev Rao B (1933) J Indian I Sci A 17A:7–15Google Scholar
  39. 39.
    Tarantilis PA, Polissiou M, Manfait M (1994) J Chromatogr 664:55–61Google Scholar
  40. 40.
    Iborra JL, Castellar MR, Canovas M, Manjón AJ (1992) Food Sci 57:714–716Google Scholar
  41. 41.
    Himeno H, Sano K (1987) Agr Biol Chem 51:2395–2400Google Scholar
  42. 42.
    Castellar MR, Montijano H, Manjón A, Iborra JL (1993) J Chromatogr 648:187–190Google Scholar
  43. 43.
    Tarantilis PA, Tsoupras G, Polissiou M (1995) J Chromatogr 699:107–118Google Scholar
  44. 44.
    Kuroda KI (2000) J Appl Pyrol 56:79–87Google Scholar
  45. 45.
    Tarantilis PA, Polissiou MG (1997) J Agr Food Chem 45:459–462Google Scholar
  46. 46.
    De Leeuw J, Baas M (1993) J Appl Pyrol 26:175–184Google Scholar
  47. 47.
    Tegelaar EW, De Leeuw J, Holloway PJ (1989) J Appl Pyrol 15:289–295Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • María José Casas-Catalán
    • 1
  • María Teresa Doménech-Carbó
    • 1
    Email author
  1. 1.Department of Conservation and Restoration of Cultural HeritagePolytechnical University of ValènciaValènciaSpain

Personalised recommendations