Analytical and Bioanalytical Chemistry

, Volume 384, Issue 4, pp 951–957

Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS

  • Brian Jackson
  • Steve Harper
  • Laura Smith
  • Jane Flinn
Original Paper


This report details the application of laser ablation quadrupole ICP-MS for the (multi)elemental mapping of 100-μm-thick sections of rat brain. The laser spot size used was 60 μm, and the laser scan speed was 120 μm s−1. The analysis was relatively rapid, allowing mapping of a whole brain thin section (≈1 cm2) in about 2 h. Furthermore, the method was amenable to multi-element data collection including the physiologically important elements P and S and afforded sub μg g−1 detection limits for the important trace elements Cu and Zn. Calibrations were performed with pressed pellets of biological certified reference materials, and the elemental distributions and concentrations of Cu, Zn, and Fe were determined in whole rat brain sections. The distributions and concentration ranges for these elements were consistent with previous studies and demonstrate the utility of this technique for rapid mapping of brain thin sections.


Laser ablation ICP-MS Rat brain sections Elemental imaging 


  1. 1.
    Nagata T (2004) Prog Histochem Cytochem 39:185-319CrossRefGoogle Scholar
  2. 2.
    Mesjasz-Przybylowicz J, Przybylowicz WJ (2002) Nucl Instrum Meth B 189:470–481CrossRefGoogle Scholar
  3. 3.
    Chandra S (2003) Appl Surf Sci 203–204:679–683CrossRefGoogle Scholar
  4. 4.
    Flinn JM, Hunter D, Linkous DH, Lanzirotti A, Smith LN, Brightwell J, Jones BF (2005) Physiol Behav 83:793–803CrossRefGoogle Scholar
  5. 5.
    Punshon T, Jackson BP, Bertsch PM, Burger J (2004) J Environ Monitor 6:153–159CrossRefGoogle Scholar
  6. 6.
    Hoffmann E, Ludke C, Skole J, Stephanowitz H, Ullrich E, Colditz D (2000) Fresenius J Anal Chem 367:579–585CrossRefGoogle Scholar
  7. 7.
    Jackson BP, Hopkins WA, Baionno J (2003) Environ Sci Technol 37:2511–2515CrossRefGoogle Scholar
  8. 8.
    Toland H, Perkins B, Pearce N, Keenan F, Leng MJ (2000) J Anal Atom Spectrom 15:1143–1148CrossRefGoogle Scholar
  9. 9.
    Vander Putten E, Dehairs F, Keppens E, Baeyens W (2000) Geochim Cosmochim Ac 64:997–1011CrossRefGoogle Scholar
  10. 10.
    Richardson CA, Chenery SRN, Cook JM (2001) Mar Ecol-Prog Ser 211:157–167Google Scholar
  11. 11.
    Watmough SA, Hutchinson TC, Evans RD (1998) J Environ Qual 27:1087–1094CrossRefGoogle Scholar
  12. 12.
    Watmough SA, Hutchinson TC, Evans RD (1997) Environ Sci Technol 31:114–118CrossRefGoogle Scholar
  13. 13.
    GarbeSchonberg CD, Reimann C, Pavlov VA (1997) Environ Geol 32:9–16CrossRefGoogle Scholar
  14. 14.
    Feldmann J, Kindness A, Ek P (2002) J Anal Atom Spectrom 17:813–818CrossRefGoogle Scholar
  15. 15.
    Kindness A, Sekaran CN, Feldmann J (2003) Clin Chem 49:1916–1923CrossRefGoogle Scholar
  16. 16.
    Becker JS, Zoriy MV, Dehnhardt M, Pickhardt C, Zilles K (2005) J Anal Atom Spectrom 20:912–917CrossRefGoogle Scholar
  17. 17.
    Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Anal Chem 77:3208–3216CrossRefGoogle Scholar
  18. 18.
    Durrant SF, Ward NL (2005) J Anal Atom Spectrom 20:821–829CrossRefGoogle Scholar
  19. 19.
    Bush AI (2003) Trends Neurosci 26:207–214CrossRefGoogle Scholar
  20. 20.
    Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) J Neurol Sci 158:47–52CrossRefGoogle Scholar
  21. 21.
    Ren MQ, Ong WY, Makjanic J, Watt F (1999) Nucl Instrum Meth B 158:418–423CrossRefGoogle Scholar
  22. 22.
    Mikhailova A, Davidson M, Channel JET, Guyodo Y, Batich C, Dobson J (2005) J Royal Soc Interface 2:33–37CrossRefGoogle Scholar
  23. 23.
    Thong PSP, Watt F, Ponraj D, Leong SK, He Y, Lee TKY (1999) Nucl Instrum Methods Phys Res B 158:349–355CrossRefGoogle Scholar
  24. 24.
    Robertson JD, Crafford AM, Markesbery WR, Lovell MA (2002) Nucl Instrum Methods Phys Res B 189:454–458CrossRefGoogle Scholar
  25. 25.
    Becker JS, Zoriy M, Becker JS, Pickhardt C, Przybylski M (2004) J Anal Atom Spectrom 19:149–152CrossRefGoogle Scholar
  26. 26.
    Becker JS, Zoriy M, Pickhardt C, Przybylski M, Becker JS (2005) Int J Mass Spectrom 242:135–144CrossRefGoogle Scholar
  27. 27.
    Paxinos G, Watson C (1998) The rat brain in sterotaxic coordinates (4th edn) Academic Press, San DiegoGoogle Scholar
  28. 28.
    Frederickson CJ, Kasarkis EJ, Ringo D, Frederickson RE (1987) J. Neurosci Methods 20:91–103CrossRefGoogle Scholar
  29. 29.
    Speziali M, Orvini E (2003) Metals distribution and regionalization in the brain. In: Zatta P (ed) Metal ions in neurodegenerative diseases. World Scientific, SinganporeGoogle Scholar
  30. 30.
    Frederickson CJ, Klitenick MA, Manton WI, Kirkpatrick JB (1983) Brain Res 273:335–339CrossRefGoogle Scholar
  31. 31.
    Tarohda T, Yamamoto M, Amano R (2004) Anal Bioanal Chem 280:240–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Brian Jackson
    • 1
  • Steve Harper
    • 2
  • Laura Smith
    • 3
  • Jane Flinn
    • 3
  1. 1.Departments of Earth Sciences and ChemistryDartmouth CollegeHanoverUSA
  2. 2.Savannah River Ecology LaboratoryUniversity of GeorgiaAikenUSA
  3. 3.Department of PsychologyGeorge Mason UniversityFairfaxUSA

Personalised recommendations