Advertisement

Analytical and Bioanalytical Chemistry

, Volume 384, Issue 5, pp 1164–1174 | Cite as

Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography–tandem mass spectrometry

  • Anne Marie JacobsenEmail author
  • Bent Halling-Sørensen
Original Paper

Abstract

A multi-component method focussing on thorough sample preparation has been developed for simultaneous analysis of swine manure for three classes of antibiotic—tetracyclines, sulfonamides, and tylosin. Liquid manure was initially freeze-dried and homogenised by pulverization before extraction by pressurised liquid extraction. The extraction was performed at 75°C and 2,500 psig in three steps using two cycles with 0.2 mol L−1 citric acid buffer (pH 4.7) and one cycle with a mixture of 80% methanol with 0.2 mol L−1 citric acid (pH 3). After liquid–liquid extraction with heptane to remove lipids, the pH of the manure was adjusted to 3 with formic acid and the sample was vacuum-filtered through 0.6 μm glass-fibre filters. Finally the samples were pre-concentrated by tandem SPE (SAX-HLB). Recoveries were determined for manure samples spiked at three concentrations (50–5,000 μg kg−1 dry matter); quantification was achieved by matrix-matched calibration. Recoveries were >70% except for oxytetracycline (42–54%), sulfadiazine (59–73%), and tylosin (9–35%) and did not vary with concentration or from day-to-day. Limits of quantification (LOQ) for all compounds, determined as a signal-to-noise ratio of 10, were in the range 10–100 μg kg−1 dry matter. The suitability of the method was assessed by analysis of swine manure samples from six different pig-production sites, e.g. finishing pigs, sows, or mixed production. Residues of antibiotics were detected in all samples. The largest amounts were found for tetracyclines (up to 30 mg kg−1 dry matter for the sum of CTC and ECTC). Sulfonamides were detected at concentrations up to 2 mg kg−1 dry matter (SDZ); tylosin was not detected in any samples.

Keywords

Tetracyclines Sulfonamides Tylosin Manure LC–ESI-MS–MS 

Notes

Acknowledgements

Mette and Anders Lundsgaard, Niels Sørensen and Niels Jacobsen are all gratefully acknowledged for providing manure samples. This study was partly funded by grants from the European Union (ERApharm, project no. 511135) and from the Danish Directorate for Food, Fisheries and Agri Business (project no. 3401-65-03-45).

References

  1. 1.
    Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lutzhoft HCH, Jørgensen SE (1998) Chemosphere 36:357–393PubMedCrossRefGoogle Scholar
  2. 2.
    Halling-Sørensen B, Jacobsen AM, Jensen J, Sengeløv G, Vaclavik E, Ingerslev F (2005) Environ Toxicol Chem 24:802–810PubMedCrossRefGoogle Scholar
  3. 3.
    Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJF (2002) J Chromatogr A 952:111–120PubMedCrossRefGoogle Scholar
  4. 4.
    Campagnolo ER, Johnson KR, Karpati A, Rubin CS, Kolpin DW, Meyer MT, Esteban JE, Currier RW, Smith K, Thu KM, McGeehin M (2002) Sci Total Environ 299:89–95PubMedCrossRefGoogle Scholar
  5. 5.
    Hamscher G, Pawelzick HT, Höper H, Nau H (2005) Environ Toxicol Chem 24:861–868PubMedCrossRefGoogle Scholar
  6. 6.
    De Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C (2003) Chemosphere 52:203–212PubMedCrossRefGoogle Scholar
  7. 7.
    Moral R, Moreno-Caselles J, Perez-Murcia MD, Perez-Espinosa A, Rufete B, Paredes C (2005) Biosource Technol 96:153–158CrossRefGoogle Scholar
  8. 8.
    Hansen KH, Angelidaki I, Ahring BK (1998) Water Res 32:5–12CrossRefGoogle Scholar
  9. 9.
    Choudhary M, Bailey LD, Grant CA (1996) Waste Manag Res 14:581–595CrossRefGoogle Scholar
  10. 10.
    Wessels JM, Ford WE, Szymczak W, Schneider S (1998) J Phys Chem B 102:9323–9331CrossRefGoogle Scholar
  11. 11.
    Lunestad BT, Goksøyr J (1990) Dis Aquat Org 9:67–72Google Scholar
  12. 12.
    Loke ML, Tjørnelund J, Halling-Sørensen B (2002) Chemosphere 48:351–361PubMedCrossRefGoogle Scholar
  13. 13.
    Kolz AC, Ong SK, Moorman TB (2005) Chemosphere 60:284–289PubMedCrossRefGoogle Scholar
  14. 14.
    Thiele-Bruhn S, Seibicke T, Schullten H-R, Leinweber P (2004) J Environ Qual 33:1331–1342PubMedCrossRefGoogle Scholar
  15. 15.
    Schulte EE, Hopkins BG (1996) Soil organic matter: analysis and interpretation. SSSA, Madison, WIGoogle Scholar
  16. 16.
    Jacobsen AM, Halling-Sorensen B, Ingerslev F, Hansen SH (2004) J Chromatogr A 1038:157–170PubMedCrossRefGoogle Scholar
  17. 17.
    Blackwell PA, Lützhoft HCH, Ma HP, Halling-Sørensen B, Boxall ABA, Kay P (2004) J Chromatogr A 1045:111–117PubMedCrossRefGoogle Scholar
  18. 18.
    Pfeifer T, Tuerk J, Bester K, Spiteller M (2002) Rapid Commun Mass Spectrom 16:663–669PubMedCrossRefGoogle Scholar
  19. 19.
    Schlüsener MP, Bester K, Spiteller M (2003) Anal Bioanal Chem 375:942–947PubMedGoogle Scholar
  20. 20.
    Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Acta Hydrochim Hydrobiol 31:36–44CrossRefGoogle Scholar
  21. 21.
    Aga DS, Goldfish R, Kulshrestha P (2003) Analyst 128:658–662PubMedCrossRefGoogle Scholar
  22. 22.
    Eichhorn P, Aga DS (2004) Anal Chem 76:6002–6011PubMedCrossRefGoogle Scholar
  23. 23.
    Kolz AC, Moorman TB, Ong SK, Scoggin KD, Douglass EA (2005) Water Environ Res 77:49–56PubMedCrossRefGoogle Scholar
  24. 24.
    Teeter JS, Meyerhoff RD (2003) Environ Res 93:45–51PubMedCrossRefGoogle Scholar
  25. 25.
    Loke ML, Ingerslev F, Halling-Sørensen B, Tjørnelund J (2000) Chemosphere 40:759–765PubMedCrossRefGoogle Scholar
  26. 26.
    Salvatore MJ, Katz SE (1993) J AOAC Int 76:952–956PubMedGoogle Scholar
  27. 27.
    Fedeniuk RW, Shand PJ (1998) J Chromatogr A 812:3–15PubMedCrossRefGoogle Scholar
  28. 28.
    Mitscher LA (1978) The chemistry of the tetracycline antibiotics. Marcel Dekker Inc., New York, NY, USAGoogle Scholar
  29. 29.
    Blackwell PA, Lützhoft HCH, Ma HP, Halling-Sørensen B, Boxall ABA, Kay P (2004) Talanta 64:1058–1064CrossRefGoogle Scholar
  30. 30.
    Hirsch R, Ternes T, Haberer K, Mehlich A, Ballwanz F, Kratz K-L (1998) J Chromatogr A 815:213–223PubMedCrossRefGoogle Scholar
  31. 31.
    Stüber M, Reemtsma T (2004) Anal Bioanal Chem 378:910–916PubMedCrossRefGoogle Scholar
  32. 32.
    Hamscher G, Sczesny S, Höper H, Nau H (2002) Anal Chem 74:1509–1518PubMedCrossRefGoogle Scholar
  33. 33.
    EMEA. (1998) Note for guidance: Environmental risk assessment for veterinary medicinal products other than GMO-containing and immunological products. EMEA/CVMP/0055/96. Committee for veterinary medicinal products. 1998. London, UK, The European agency for the evaluation of medicinal productsGoogle Scholar
  34. 34.
    Qiang Z, Adams C (2004) Water Res 38:2874–2890PubMedCrossRefGoogle Scholar
  35. 35.
    Morishita T, Yamazaki M, Yata N, Kamada A (1973) Chem Pharm Bull 21:2309–2322PubMedGoogle Scholar
  36. 36.
    Schumacher GE, Linn EE (1978) J Pharm Sci 67:1717–1720PubMedCrossRefGoogle Scholar
  37. 37.
    Combined Chemical Dictionary (2005) http://www.chemnetbase.com/scripts/ccdweb.exe. Accessed 15 Nov 2005
  38. 38.
    McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP, Vu CB (1997) J Med Chem 40:1340–1346PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Pharmaceutical and Analytical ChemistryThe Danish University of Pharmaceutical SciencesCopenhagenDenmark

Personalised recommendations