Analytical and Bioanalytical Chemistry

, Volume 384, Issue 3, pp 564–571 | Cite as

Directing energy flow through quantum dots: towards nanoscale sensing

  • Dale M. Willard
  • Tina Mutschler
  • Ming Yu
  • Jaemyeong Jung
  • Alan Van Orden
Review

Abstract

Nanoscale sensors can be created when an expected energetic pathway is created and then that pathway is either initiated or disrupted by a specific binding event. Constructing the sensor on the nanoscale could lead to greater sensitivity and lower limits of detection. To this end, quantum dots (QDs) can be considered prime candidates for the active components. Relative to organic chromophores, QDs have tunable spectral properties, show less susceptibility to photobleaching, have similar brightness, and have been shown to display electro-optical properties. In this review, we discuss recent articles that incorporate QDs into directed energy flow systems, some with the goal of building new and more powerful sensors and others that could lead to more powerful sensors.

Keywords

Nanoparticles Quantum dot cooperation Switching Biosensoring Energy transfer Quantum dots 

References

  1. 1.
    Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Phys Rev Lett 76:1517–1520Google Scholar
  2. 2.
    Crooker SA, Hollingsworth JA, Tretiak S, Klimov VI (2002) Phys Rev Lett 89:186802Google Scholar
  3. 3.
    Franzl T, Shavel A, Rogach AL, Gaponik N, Klar TA, Eychmueller A, Feldmann J (2005) Small 1:392–395Google Scholar
  4. 4.
    Westenhoff S, Kotov NA (2002) J Am Chem Soc 124:2448–2449Google Scholar
  5. 5.
    Tang ZY, Ozturk B, Wang Y, Kotov NA (2004) J Phys Chem B 108:6927–6931Google Scholar
  6. 6.
    Biju V, Makita Y, Sonoda A, Yokoyama H, Baba Y, Ishikawa M (2005) J Phys Chem B 109:13899–13905Google Scholar
  7. 7.
    Unold T, Mueller K, Lienau C, Elsaesser T, Wieck AD (2005) Phys Rev Lett 94:137404CrossRefGoogle Scholar
  8. 8.
    Grecco HE, Lidke KA, Heintzmann R, Lidke DS, Spagnuolo C, Martinez OE, Jares-Erijman EA, Jovin TM (2004) Microsc Res Technique 65:169–179Google Scholar
  9. 9.
    Willard DM, Van Orden A (2003) Nature Mat 2:575–576Google Scholar
  10. 10.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nature Mat 4:435–446Google Scholar
  11. 11.
    Wargnier R, Baranov AV, Maslov VG, Stsiapura V, Artemyev M, Pluot M, Sukhanova A, Nabiev I (2004) Nano Lett 4:451–457Google Scholar
  12. 12.
    Basko DM, Bassani F, La Rocca GC (2000) Eur Phys J B 13:653–659CrossRefGoogle Scholar
  13. 13.
    Willard DM, Carillo LL, Jung J, Van Orden A (2001) Nano Lett 1:469–474Google Scholar
  14. 14.
    Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I (2003) J Am Chem Soc 125:13918–13919CrossRefGoogle Scholar
  15. 15.
    Kim JH, Morikis D, Ozkan M (2004) Sensor Actuat B 102:315–319Google Scholar
  16. 16.
    Kloepfer JA, Cohen N, Nadeau JL (2004) J Phys Chem B 108:17042–17049CrossRefGoogle Scholar
  17. 17.
    Hohng S, Ha T (2005) ChemPhysChem 6:956–960Google Scholar
  18. 18.
    Goldman E, Anderson G, Tran P, Mattoussi H, Charles P, Mauro J (2002) Anal Chem 74:841–847CrossRefGoogle Scholar
  19. 19.
    Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Anderson GP (2002) J Am Chem Soc 124:6378–6382CrossRefGoogle Scholar
  20. 20.
    Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nature Mat 2:630–638Google Scholar
  21. 21.
    Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) J Am Chem Soc 126:301–310Google Scholar
  22. 22.
    Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman ME, Mattoussi H (2005) J Am Chem Soc 127:6744–6751CrossRefGoogle Scholar
  23. 23.
    Mueller F, Goetzinger S, Gaponik N, Weller H, Mlynek J, Benson O (2004) J Phys Chem B 108:14527–14534CrossRefGoogle Scholar
  24. 24.
    Ebenstein Y, Mokari T, Banin U (2004) J Phys Chem B 108:93–99CrossRefGoogle Scholar
  25. 25.
    Shubeita GT, Sekatskii SK, Dietler G, Potapova I, Mews A, Basche T (2003) J Microsc 210:274–278Google Scholar
  26. 26.
    Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H (2005) J Am Chem Soc 127:1242–1250CrossRefGoogle Scholar
  27. 27.
    Achermann M, Petruska MA, Kos S, Smith DL, Koleske DD, Klimov VI (2004) Nature 429:642–646CrossRefGoogle Scholar
  28. 28.
    Anni M, Manna L, Cingolani R, Valerini D, Cretí A, Lomascolo M (2004) App Phys Lett 85:4169–4171CrossRefGoogle Scholar
  29. 29.
    Kim JY, Osterich FE (2005) J Am Chem Soc 127:10152–10153CrossRefGoogle Scholar
  30. 30.
    Gryczinski I, Malicka J, Jiang W, Fischer H, Chan W, Gryczinski Z, Grudzinski W, Lakowicz J (2005) J Phys Chem B 109:1088–1093Google Scholar
  31. 31.
    Gryczinski I, Malicka J, Gryczinski Z, Lakowicz JR (2004) J Phys Chem B 108:12568–12574Google Scholar
  32. 32.
    Malicka JG, Gryczinski I, Gryczinski Z, Lakowicz JR (2004) J Biomol Screen 9:208–215Google Scholar
  33. 33.
    Gryczinski I, Malicka J, Gryczinski Z, Lakowicz J (2004) Anal Biochem 324:170–182Google Scholar
  34. 34.
    Lakowicz J (2004) Anal Biochem 324:153–169CrossRefGoogle Scholar
  35. 35.
    Matveeva E, Malicka J, Gryczinsk I, Gryczinski Z, Lakowicz J (2004) Biochem Biophys Res Commun 313:721–726Google Scholar
  36. 36.
    Colvin VL, Schlamp MC, Alivisatos AP (1994) Nature 370:354–357Google Scholar
  37. 37.
    Tessler N, Medvedev V, Kazes M, Kan SH, Banin U (2002) Science 295:1506–1508Google Scholar
  38. 38.
    Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Appl Phys Lett 66:1316–1318Google Scholar
  39. 39.
    Ginger DS, Greenham NC (1999) Phys Rev B 59:10622–10629Google Scholar
  40. 40.
    McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Nature Mat 4:138–142Google Scholar
  41. 41.
    McDonald SA, Cyr PW, Levina L, Sargent EH (2004) Appl Phys Lett 85:2089–2091Google Scholar
  42. 42.
    Heeger AJ (2001) J Phys Chem B 105:8475–8491CrossRefGoogle Scholar
  43. 43.
    Halls JJM, Walsh AA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holms AB (1995) Nature 376:498–500Google Scholar
  44. 44.
    Tessler ND, Denton GJ, Friend RH (1996) Nature 382:695–697Google Scholar
  45. 45.
    Hide F, Diaz-Garcia MA, Schwartz BJ, Andersson MR, Pei QB, Heeger AJ (1996) Science 273:1833–1836Google Scholar
  46. 46.
    Gross M, Muller DC, Nothofer H-G, Scherf U, Neher D, Brauchle C, Meerholz K (2000) Nature 405:661–665Google Scholar
  47. 47.
    Granstrom MP, Petritsh K, Arias AC, Lux A, Andersson MR, Friend RH (1998) Nature 395:257–260Google Scholar
  48. 48.
    Yang YS, Swager TM (1998) J Am Chem Soc 120:11864–11873Google Scholar
  49. 49.
    Bakueva L, Konstantatos G, Levina L, Musikhin S, Sargent EH (2004) Appl Phys Lett 84:3459–3461Google Scholar
  50. 50.
    Bakueva L, Musikhin S, Hines MA, Chang T-WF, Tzolov M, Scholes GD, Sargent EH (2003) Appl Phys Lett 82:2895–2897Google Scholar
  51. 51.
    Su M, Aslam M, Fu L, Wu N, Dravid VP (2004) Appl Phys Lett 84:4200–4202Google Scholar
  52. 52.
    Suh KY, Seong J, Khademhosseini A, Laibins P, Langer R (2004) Biomaterials 25:557–563Google Scholar
  53. 53.
    Bakueva, L, Musikhin S, Sargent EH, Ruda HE, Shik A (2003) In: Handbook of organic-inorganic hybrid materials and nanocomposites, vol 2. American Scientific, Valencia, CA, pp 181–215Google Scholar
  54. 54.
    Chang T-WF, Musikhin S, Bakueva L, Levina L, Hines MA, Cyr PW, Sargent EH (2004) Appl Phys Lett 84:4295–4297Google Scholar
  55. 55.
    Warner JH, Watt AR, Thomsen E, Heckenberg N, Meredith P, Rubinsztein-Dunlop H (2005) J Phys Chem B 109:9001–9005Google Scholar
  56. 56.
    Greenham NC, Peng XG, Alivisatos AP (1996) Phys Rev B 54:17628–17637Google Scholar
  57. 57.
    Sargent EH (2005) Adv Mater 17:515–522CrossRefGoogle Scholar
  58. 58.
    Hong S-K (2005) Physica E 28:66–75CrossRefGoogle Scholar
  59. 59.
    Javier A, Yun CS, Sorena J, Strouse GF (2003) J Phys Chem B 107:435–442Google Scholar
  60. 60.
    Huynh WU, Peng XG, Alivisatos AP (1999) Adv Mater 11:923–927CrossRefGoogle Scholar
  61. 61.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425–2427CrossRefGoogle Scholar
  62. 62.
    Skaff H, Sill K, Emrick T (2004) J Am Chem Soc 126:11322–11325Google Scholar
  63. 63.
    Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2005) J Am Chem Soc 127:496–497Google Scholar
  64. 64.
    Hohng S, Ha T (2004) J Am Chem Soc 126:1324–1325Google Scholar
  65. 65.
    Aldana J, Wang YA, Peng X (2001) J Am Chem Soc 123:8844–8850Google Scholar
  66. 66.
    Jeong S, Achermann M, Nanda J, Ivanov S, Klimov VI, Hollingsworth JA (2005) J Am Chem Soc 127:10126–10127Google Scholar
  67. 67.
    Kloepfer JA, Bradforth SE, Nadeau JL (2005) J Phys Chem B 109:9996-10003Google Scholar
  68. 68.
    Potapova I, Mruk R, Prehl S, Zentel R, Basche T, Mews A (2003) J Am Chem Soc 125:320–321Google Scholar
  69. 69.
    Schmelz O, Mews A, Basche T, Herrmann A, Mullen K (2001) Langmuir 17:2861–2865Google Scholar
  70. 70.
    Ji X, Zheng J, Xu J, Rastogi VK, Cheng T-C, DeFrank JJ, Leblanc RM (2005) J Phys Chem B 109:3793–3799CrossRefGoogle Scholar
  71. 71.
    Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2004) J Am Chem Soc 126:30–31CrossRefGoogle Scholar
  72. 72.
    Shen Y, Swiatkiewicz J, Lin TC, Markovicz P, Prasad PN (2002) J Phys Chem B 106:4040–4042Google Scholar
  73. 73.
    Gryczinski I, Malicka J, Shen Y, Gryzinski Z, Lakowicz J (2002) J Phys Chem B 106:2191–2195Google Scholar
  74. 74.
    Ditlbacher H, Felidj N, Krenn JR, Lamprecht B, Leitner A, Ausseneg FR (2001) Appl Phys B 73:373–377Google Scholar
  75. 75.
    Shimizu KT, Woo WK, Fisher BR, Eisler HJ, Bawendi MG (2002) Phys Rev Lett 89:117401Google Scholar
  76. 76.
    Gersten JN, Nitzan A (1980) J Chem Phys 73:3023–3037Google Scholar
  77. 77.
    Glass AM, Liao PF, Bergmann JG, Olson DH (1980) Opt Lett 5:368–370Google Scholar
  78. 78.
    Moskovits M (1985) Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  79. 79.
    Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Nano Lett 2:1449–1452Google Scholar
  80. 80.
    Chang RK, Furtak TE (1982) Surface enhanced raman scattering. Plenum, New YorkGoogle Scholar
  81. 81.
    Nikoobakht B, Burda C, Braun M, Hun M, El-Sayed M (2002) Photochem Photobiol 75:591–597Google Scholar
  82. 82.
    Lee J, Govorov AO, Dulka J, Kotov NA (2004) Nano Lett 4:2323–2330Google Scholar
  83. 83.
    Wargnier R, Baranov AV, Maslov VG, Stsiapura V, Artemyev M, Pluot M, Nabiev I (2004) Nano Lett 4:451–457Google Scholar
  84. 84.
    Gueroui ZL, Libchaber A (2004) Phys Rev Lett 93:166108Google Scholar
  85. 85.
    Oh E, Hong M-Y, Lee D, Nam S-H, Yoon HC, Kim H-S (2005) J Am Chem Soc 127:3270–3271Google Scholar
  86. 86.
    Wang CJ, Shim M, Guyot-Sionnest P (2001) Science 291:2390–2392Google Scholar
  87. 87.
    Wang CJ, Shim M, Guyot-Sionnest P (2002) Appl Phys Lett 80:4–6Google Scholar
  88. 88.
    Poznyak SK, Talapin DV, Shevchenko EV, Weller H (2004) Nano Lett 4:693–698Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Dale M. Willard
    • 1
  • Tina Mutschler
    • 1
  • Ming Yu
    • 1
  • Jaemyeong Jung
    • 1
  • Alan Van Orden
    • 1
  1. 1.Chemistry DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations