Advertisement

Analytical and Bioanalytical Chemistry

, Volume 384, Issue 3, pp 667–682 | Cite as

Acoustic microsensors—the challenge behind microgravimetry

  • Ralf LucklumEmail author
  • Peter Hauptmann
Review

Abstract

Acoustic microsensors are commonly known as high-resolution mass-sensitive devices. This is a restricted view in many chemical and biosensor applications, especially in liquids. Sensitivity to non-gravimetric effects is a challenging feature of acoustic sensors. In this review we give an overview of recent developments in resonant sensors including micromachined devices and also list recent activity relating to the (bio)chemical interface of acoustic sensors. Major results from theoretical analysis of quartz crystal resonators, descriptive for all acoustic microsensors are summarized, and non-gravimetric contributions to the sensor signal from viscoelasticity and interfacial effects are discussed. We finally conclude with some future perspectives.

Keywords

Resonant microsensors Acoustic sensors Cantilever sensors 

References

  1. 1.
    Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift Physik 155:206–212Google Scholar
  2. 2.
    EerNisse EP, Wiggins RB (2001) Review of thickness-shear mode quartz resonator sensors for temperature and pressure. IEEE Sensors J 1:79–87Google Scholar
  3. 3.
    King WH Jr (1964) Piezoelectric sorption detector. Anal Chem 36:1735–1739Google Scholar
  4. 4.
    Ward MD, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249:1000–1007Google Scholar
  5. 5.
    Prajakovic LV, Cavic-Vlasal BA, Ghaemmaghami V, Kallury KMR, Kipling AL, Thompson M (1991) Mediation of acoustic energy transmission from acoustic wave sensors to the liquid phase by interfacial viscosity. Anal Chem 63:615–621Google Scholar
  6. 6.
    Cavic BA, Chu FL, Furtado LM, Ghafouri S, Hayward GL, Mack DP, McGovern ME, Su H, Thompson M (1997) Acoustic waves and the real-time study of biochemical macromolecules at the liquid/solid interface. Faraday Discuss 107:159–176Google Scholar
  7. 7.
    Eichelbaum F, Borngräber R, Schröder J, Lucklum R, Hauptmann P (1999) Interface circuits for quartz crystal-microbalance sensors. Rev Sci Instr 70:2537–2545Google Scholar
  8. 8.
    Kanazawa KK (2005) Some basics for operating and analyzing data using the thickness shear mode resonator. Analyst 130:1459–1464Google Scholar
  9. 9.
    Scholl G, Schmidt F, Ostertag T, Reindl L, Scherr H, Wolff U (1998) Wireless passive SAW sensor system for industrial and domestic applications. IEEE Int Freq Cont Symp Proceedings 595–601Google Scholar
  10. 10.
    Springer A, Weigel R, Pohl A, Seifert F (1999) Wireless identification and sensing using surface acoustic wave devices. Mechatronics 9:745–756Google Scholar
  11. 11.
    Dong Y, Cheng W, Wang S, Li Y, Feng G (2001) A multi-resolution passive SAW chemical sensor. Sens Actuators B 76 76:130–133Google Scholar
  12. 12.
    Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellers ET, Frye GC, Wohltjen H (1997) Acoustic Wave Sensors. Academic, LondonGoogle Scholar
  13. 13.
    Arnau A (Ed.) (2004) Piezoelectric Transducers and Applications. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. 14.
    Grate JW, Martin SJ, White RM (1993) Acoustic wave microsensors. Anal Chem 65:987A–996AGoogle Scholar
  15. 15.
    Josse F (1994) Acoustic wave liquid-phase-based microsensors. Sens Actuators A 44:199–208Google Scholar
  16. 16.
    Kaspar M, Stadler H, Weiß T, Ziegler C (2000) Thickness shear mode resonators (“mass-sensitive devices”) in bioanalysis. Fresenius J Anal Chem 366:602–610Google Scholar
  17. 17.
    Viens M, Li P, Wang Z, Jen CK, Thompson M, Cheeke JDN (1996) Mass sensitivity of thin rod acoustic wave sensors. IEEE Trans. Ultrason Ferroelec Freq Contr 43:852–857Google Scholar
  18. 18.
    Lin X, Cheeke JDN, Wang Z, Jen CK, Viens M, Yi G, Sayer M (1995) Ultrasonic thin-walled tube wave devices for sensor applications. Appl Phys Lett 76:37–39Google Scholar
  19. 19.
    Li PCH, Thompson M (1996) Mass sensitivity of the tube acoustic wave sensor in the extensional mode. Anal Chim Acta 336:13–21Google Scholar
  20. 20.
    Yamanaka K, Ishikawa S, Nakaso N, Takeda T, Mihara T, Tsukahara Y (2003) Ball SAW devices for hydrogen gas sensor. IEEE Ultrason Symp Proceedings 299–302Google Scholar
  21. 21.
    Huang CL, Tay KW, Wu L (2005) Fabrication and performance analysis of film bulk acoustic wave resonators. Materials Letters 59:1012–1016Google Scholar
  22. 22.
    Dorozhkin LM, Dorozhkina GN, Fokin AV, Rozanov IA, Sabelnikov AG, Sevastjanov VG (2005) Thin film piezoelectric acoustic sensor (TFPAS): further experimental validation of the theory of resonance sensitivity. Sens Actuators B 106:529–533Google Scholar
  23. 23.
    Thundat T, Chen GY, Warmack RJ, Allison DP, Wachter EA (1995) Vapor Detection Using Resonating Microcantilevers. Anal Chem 67:519–521Google Scholar
  24. 24.
    Berger R, Gerber C, Lang HP, Gimzewski JK (1997) Micromechanics: a toolbox for femtoscale science: towards a laboratory on a tip. Microelectron Eng 35:373–379Google Scholar
  25. 25.
    Lack FR, Willard GW, Fair IE (1934) Some improvements in quartz crystal circuit elements. Bell Syst Tech J 13:453–463Google Scholar
  26. 26.
    Ballato AD, Bechmann R (1960) Effect of initial stress on vibrating quartz plates. Proceedings IRE 48:261–262Google Scholar
  27. 27.
    Kosinski JA, Pastore RA (2001) Theory and design of piezoelectric resonators immune to acceleration: present state of the art. IEEE Trans Ultrason Ferroel Freq Contr 48:1426–1437Google Scholar
  28. 28.
    Tancrell RH, Schulz MB, Barrett HH, Davies L, Holland MG (1969) Dispersive delay lines using ultrasonic surface waves. Proceedings IEEE 57:1211–1213Google Scholar
  29. 29.
    Dieulesaint E, Hartmann P (1973) Acoustic surface wave filters. Ultrasonics 11:24–30Google Scholar
  30. 30.
    Coon A (1991) SAW Filters and Competitive Technologies-A Comparative Review IEEE Ultrason Symp Proceedings 155–160Google Scholar
  31. 31.
    Aigner R MEMS in RF-Filter Applications: Thin Film Bulk-Acoustic-Wave Technology 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers ’05) to be published in Sensors ActuatorsGoogle Scholar
  32. 32.
    Binning G, Quate CF, Gerber C (1986) Atomic Force Microscope. Phys Rev Lett 56:930–933Google Scholar
  33. 33.
    Bard AJ, Fan FRF, Kwak J, Lev O (1989) Scanning electrochemical microscopy. Introduction and principles. Anal Chem 61:132–138Google Scholar
  34. 34.
    Bykov VA, Novikov YA, Rakov AV, Shikin SM (2003) Defining the parameters of a cantilever tip AFM by reference structure. Ultramicroscopy 96:175–180Google Scholar
  35. 35.
    Fasching RJ, Tao Y, Prinz FB (2005) Cantilever tip probe arrays for simultaneous SECM and AFM analysis. Sensors Actuators: B 108:964–972Google Scholar
  36. 36.
    Lin Z, Yip CM, Joseph IS, Ward MD (1993) Operation of an ultrasensitive 30 MHz quartz crystal microbalance in liquids. Anal Chem 65:1546–1551Google Scholar
  37. 37.
    Abe T, Esashi M (2000) One-chip multichannel quartz crystal microbalance (QCM) fabricated by Deep RIE. Sens Actuators A 82:139–143Google Scholar
  38. 38.
    Vig JR, Filler RF, Kim Y (1995) Microresonator sensor array. IEEE Int Freq Contr Symp Proceedings 852–869Google Scholar
  39. 39.
    Zimmermann B, Lucklum R, Hauptmann P, Rabe J, Büttgenbach S (2001) Electrical characterisation of high frequency thickness-shear-mode resonators by impedance analysis. Sensor Actuators B 76:47–57Google Scholar
  40. 40.
    Rabe J, Büttgenbach S, Schröder J, Hauptmann P (2003) Monolithic Miniaturized Quartz Microbalance Array and Its Application to Chemical Sensor Systems for Liquids. IEEE Sensors J 3:361–368Google Scholar
  41. 41.
    Stevenson AC, Lowe CR (1998) Noncontact excitation of high Q acoustic resonances in glass plates. Appl Phys Lett 73:447–449Google Scholar
  42. 42.
    Stevenson AC, Lowe CR (1999) Magnetic-acoustic-resonator sensors (MARS): a new sensing technology. Sens Actuators A 72:32–37Google Scholar
  43. 43.
    Lucklum F, Hauptmann P, deRooij NF accepted for Meas Sci TechnolGoogle Scholar
  44. 44.
    Thompson M, Ballantyne SM, Stevenson AC, Lowe CR (2003) Electromagnetic excitation of high frequency acoustic waves and detection in the liquid phase. Analyst 128:1048–1055Google Scholar
  45. 45.
    Vasilescu A, Ballantyne SM, Cheran LE, Thompson M (2005) Surface properties and electromagnetic excitation of a piezoelectric gallium phosphate biosensor. Analyst 130:213–220Google Scholar
  46. 46.
    Darinskii AN unpublishedGoogle Scholar
  47. 47.
    Stevenson AC, Araya-Kleinsteuber B, Sethi RS, Metha HM, Lowe CR (2003) The acoustic spectrophonometer: a novel bioanalytical technique based on multifrequency acoustic devices. Analyst 128:1222–1227Google Scholar
  48. 48.
    Ballantyne SM, Thompson M (2004) Superior analytical sensitivity of electromagnetic excitation compared to contact electrode instigation of transverse acoustic waves. Analyst 129:219–224Google Scholar
  49. 49.
    Stevenson AC, Araya-Kleinsteuber B, Sethi RS, Metha HM, Lowe CR (2005) Planar coil excitation of multifrequency shear wave transducers. Biosens Bioelectron 20:1298–1304Google Scholar
  50. 50.
    Raiteri R, Grattarola M, Butt HJ, Skládal P (2001) Micromechanical cantilever-based biosensors. Sens Actuators B: 79:115–126Google Scholar
  51. 51.
    Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959Google Scholar
  52. 52.
    Lang HP, Hegner M, Gerber C (2005) Cantilever array sensors. Materials Today 8:30–36Google Scholar
  53. 53.
    Wang Z, Yue R, Zhang R, Liu L (2005) Design and optimization of laminated piezoresistive microcantilever sensors. Sens Actuators A 120:325–336Google Scholar
  54. 54.
    Adams JD, Rogers B, Manning L, Hu Z, Thundat T, Cavazos H, Minne SC (2005) Piezoelectric self-sensing of adsorption-induced microcantilever bending. Sens Actuators A 121:457–461Google Scholar
  55. 55.
    Zribi A, Knobloch A, Tian WC, Goodwin S (2005) Micromachined resonant multiple gas sensor. Sens Actuators A 122:31–38Google Scholar
  56. 56.
    Tian F, Hansen KM, Ferrell TL, Thundat T (2005) Dynamic Microcantilever Sensors for Discerning Biomolecular Interactions. Anal Chem 77:1601–1606Google Scholar
  57. 57.
    Zribi A, Knobloch A, Rao R (2005) CO2 detection using carbon nanotube networks and micromachined resonant transducers. Appl Phys Lett 86:203112–20115Google Scholar
  58. 58.
    Mukhopadhyay R, Lorentzen M, Kjems J, Besenbacher F Nanomechanical Sensing of DNA Sequences Using Piezoresistive Cantilevers. Langmuir ASAP Article S0743–7463(05)01168–6Google Scholar
  59. 59.
    Campbell GA, Mutharasan R (2005) Detection of pathogen Escherichia coli O157:H7 using self-excited PZTglass microcantilevers. Biosens Bioelectron 21:462–473Google Scholar
  60. 60.
    Gfeller KY, Nugaeva N, Hegner M (2005) Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosens Bioelectron 21:528–533Google Scholar
  61. 61.
    Agostona A, Keplinger F, Jakoby B (2005) Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids. Sens Actuators A 123–124:82–86Google Scholar
  62. 62.
    Lee Y, Lim G, Moon W (2005) A piezoelectric micro-cantilever bio-sensor using the mass-microbalancing technique with self-excitation 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers 05) Proceedings 644–647Google Scholar
  63. 63.
    Vancura C, Ruegg M, Li Y, Hagleitner C, Hierlemann A (2005) Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems. Anal Chem 77:2690–2699Google Scholar
  64. 64.
    Han LH, Chen S (2005) Wireless bimorph micro-actuators by pulsed laser heating. Sens Actuators A 121:35–43Google Scholar
  65. 65.
    Lin YC, Ono T, Esashi M (2005) Quartz-crystal cantilevered resonator for nanometric sensing 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers 05) Proceedings 593–596Google Scholar
  66. 66.
    Vidic A, Then D, Ziegler C (2003) A new cantilever system for gas and liquid sensing. Ultramicroscopy 97:407–416Google Scholar
  67. 67.
    Zhang W, Turner KL (2005) Application of parametric resonance amplification in a single-crystal silicon microoscillator based mass sensor. Sens Actuators A 122:23–30Google Scholar
  68. 68.
    Dohn S, Sandberg R, Svendsen W, Boisen A (2005) Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers 05) Proceedings 636–639Google Scholar
  69. 69.
    Vancura C, Li Y, Kirstein KU, Josse F, Hierlemann A, Lichtenberg J (2005) Fully integrated CMOS resonant cantilever sensor for biochemical detection in liquid environments 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers 05) Proceedings 640–643Google Scholar
  70. 70.
    Seo JH, Brand O (2005) Novel high Q-factor resonant microsensor platform for chemical and biological applications 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers 05) Proceedings 247–251Google Scholar
  71. 71.
    Burg TB, Manalis SR (2003) Suspended microchannel resonators for biomolecular detection. Appl Phys Lett 83:2698–2700Google Scholar
  72. 72.
    Ferrari V, Marioli D, Taroni A (2001) Theory, modeling and characterization of PZT-on-alumina resonant piezo-layers as acoustic-wave mass sensors. Sens Actuators A 92:182–190Google Scholar
  73. 73.
    Schreiter M, Gabl R, Pitzer D, Primig R, Wersing W (2004) Electro-acoustic hysteresis behaviour of PZT thin film bulk acoustic resonators. J European Ceramic Soc 24:1589–1592Google Scholar
  74. 74.
    Ferrari M, Ferrari V, Marioli D, Taroni A, Suman M, Dalcanale E (2004) Cavitand-coated PZT resonant piezo-layer sensors: properties, structure, and comparison with QCM sensors at different temperatures under exposure to organic vapors. Sens Actuators B 103:240–246Google Scholar
  75. 75.
    Kang YR, Kang SC, Paek KK, Kim YK, Kim SW, Ju BK (2005) Air-gap type film bulk acoustic resonator using flexible thin substrate. Sens Actuators A 117:62–70Google Scholar
  76. 76.
    Nicu L, Guirardel M, Chambosse F, Rougerie P, Hinh S, Trevisiol E, Francois JM, Majoral JP, Caminade AM, Cattand E, Bergaud C (2005) Resonating piezoelectric membranes for microelectromechanically based bioassay: detection of streptavidin-gold nanoparticles interaction with biotinylated DNA. Sens Actuators B 110:125–136Google Scholar
  77. 77.
    Huang CL, Tay KW, Wu L (2005) Fabrication and performance analysis of film bulk acoustic wave resonators. Materials Lett 59:1012–1016Google Scholar
  78. 78.
    Hauptmann P, Hoppe N, Püttmer A (2002) Application of ultrasonic sensors in the process industry. Meas Sci Technol 13:R73–R83Google Scholar
  79. 79.
    Püttmer A, Linzenkirchner E, Hauptmann P (2004) Ultraschallsensoren für die Prozesstechnik. atp 46:S51–S59Google Scholar
  80. 80.
    Ladabaum I, Khuri-Yakub BT, Spoliansky D (1996) Micromachined ultrasonic transducers (MUTs): 11.4 MHz transmission in air and More. Appl Phys Lett 68:7–9Google Scholar
  81. 81.
    Eccardt P, Niederer K, Scheiter T, Hierold C (1996) IEEE Ultrason Symp Proceedings vol. 2:959–962Google Scholar
  82. 82.
    Jin X, Ladabaum I, Khuri-Yakub BT (1998) The microfabrication of capacitive ultrasonic transducers. IEEE J Microelectromech Syst 7:295–302Google Scholar
  83. 83.
    Bayram B, Oralkan O, Ergun AS, Haeggstrom E, Yaralioglu GG, Khuri-Yakub BT (2005) Capacitive micromachined ultrasonic transducer design for high power transmission. IEEE Trans Ultrason Ferroelec Freq Contr 52:326–339Google Scholar
  84. 84.
    Huang Y, Haeggstrom EO, Zhuang X, Ergun AS, Khuri-Yakub BT (2005) A solution to the charging problems in capacitive micromachined ultrasonic transducers. Trans Ultrason Ferroelec Freq Contr 52:578–580Google Scholar
  85. 85.
    Caliano G, Savoia A, Caronti A, Foglietti V, Cianci E, Pappalardo M (2005) Capacitive micromachined ultrasonic transducer with an open-cells structure. Sens Actuators A 121:382–387Google Scholar
  86. 86.
    Guldiken RO, Degertekin FL (2005) Micromachined capacitive transducer arrays for intravascular ultrasound imaging MEMS Proceedings 315–318Google Scholar
  87. 87.
    Perçin G, Atalar A, Levent Degertekin F, Khuri-Yakub BT (1998) Micromachined two-dimensional array piezoelectrically actuated transducers. Appl Phys Lett 72:1397–1399Google Scholar
  88. 88.
  89. 89.
    Santos JP, Fernández MJ, Fontecha JL, Lozano J, Aleixandre M, García M, Gutiérrez J, Horrillo MC (2005) SAW sensor array for wine discrimination. Sens Actuators B 107:291–295Google Scholar
  90. 90.
    Atashbar MZ, Bejcek B, Vijh A, Singamaneni S (2005) QCM biosensor with ultra thin polymer film. Sens Actuators B 107:945–951Google Scholar
  91. 91.
    Matsuguchi M, Kadowaki Y, Tanaka M (2005) A QCM-based NO2 gas detector using morpholine-functional cross-linked copolymer coatings. Sens Actuators B 108:572–575Google Scholar
  92. 92.
    Razan F, Zimmermann C, Rebière D, Déjous C, Pistré J, Destarac M, Pavageau B (2005) Radio frequency thin film characterization with polymer-coated Love-wave sensor. Sens Actuators B 108:917–924Google Scholar
  93. 93.
    Rahman MA, Kwon NH, Won MS, Sang Choe E, Shim YB (2005) Functionalized Conducting Polymer as an Enzyme-Immobilizing Substrate: an amperometric glutamate microbiosensor for in vivo measurements. Anal Chem ASAP Article 10.1021Google Scholar
  94. 94.
    Sellborn A, Andersson M, Hedlunda J, Andersson J, Berglin M, Elwing H (2005) Immune complement activation on polystyrene and silicon dioxide surfaces, Impact of reversible IgG adsorption. Mol Immunology 42:569–574Google Scholar
  95. 95.
    Horkay F, Horkayne-Szakaly I, Basser PJ (2005) Measurement of the osmotic properties of thin polymer films and biological tissue samples. Biomacromolecules 6:988–993Google Scholar
  96. 96.
    Kim SR, Kim JD, Choi KH, Chang YH (1997) NO2-sensing properties of octa(2–ethylhexyloxy)metallophthalocyanine LB films using quartz-crystal microbalance. Sens Actuators B 40:39–45Google Scholar
  97. 97.
    Penza M, Cassano G, Sergi A, Sterzo Lo C, Russo MV (2001) SAW chemical sensing using poly-ynes and organometallic polymer films. Sens Actuators B 81:88–98Google Scholar
  98. 98.
    Jakubik WP, Urbaczyk MW, Kochowski S, Bodzenta J (2003) Palladium and phthalocyanine bilayer films for hydrogen detection in a surface acoustic wave sensor system. Sens Actuators B 96:321–328Google Scholar
  99. 99.
    Ricco AJ, Crooks RM, Osbourn GC (1998) Surface acoustic wave chemical sensor arrays: new chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures. Accounts Chem Research 31:289–296Google Scholar
  100. 100.
    Heila C, Windscheif GR, Braschohs S, Flörke J, Gläser J, Lopez M, Müller-Albrecht J, Schramm U, Bargon J, Vögtle F (1999) Highly selective sensor materials for discriminating carbonyl compounds in the gas phase using quartz microbalances. Sens Actuators B 61:51–58Google Scholar
  101. 101.
    Schlupp M, Weil T, Berresheim AJ, Wiesler UM, Bargon J, Müllen K (2001) Polyphenylen-Dendrimere als empfindliche und selektive Sensorschichten. Angew Chem 113:4124–4129Google Scholar
  102. 102.
    Zhao H, Li J, Xi F, Jiang L (2004) Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA. FEBS Lett 563:241–245Google Scholar
  103. 103.
    Koshets IA, Kazantseva ZI, Shirshov YM, Cherenok SA, Kalchenko VI (2005) Calixarene films as sensitive coatings for QCM-based gas sensors. Sens Actuators B: 106:177-181Google Scholar
  104. 104.
    Ersöz A, Denizli A, Özcan A, Say R (2005) Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosens Bioelectron 20:2197–2202Google Scholar
  105. 105.
    Piacham T, Josell Å, Arwin H, Prachayasittikul V, Ye L (2005) Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Anal Chim Acta 536:191–196Google Scholar
  106. 106.
    Rick J, Chou TC (2005) Imprinting unique motifs formed from protein-protein associations. Anal Chim Acta 542:26–31Google Scholar
  107. 107.
    Feng L, Liu Y, Zhou X, Hu J (2005) The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers. J. Colloid Interface Sci 284:378–382Google Scholar
  108. 108.
    Ebarvia BS, Cabanilla S, Sevilla F III (2005) Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole. Talanta 66:145–152Google Scholar
  109. 109.
    Lee SW, Yang DH, Kunitake T (2005) Regioselective imprinting of anthracenecarboxylic acids onto TiO2 gel ultrathin films: an approach to thin film sensor. Sens Actuators B 104:35–42Google Scholar
  110. 110.
    Zhang Z, Li H, Liao H, Nie L, Yao S (2005) Influence of cross-linkers’ amount on the performance of the piezoelectric sensor modified with molecularly imprinted polymers. Sens Actuators B 105:176–182Google Scholar
  111. 111.
    Ebarvia BS, Sevilla F III (2005) Piezoelectric quartz sensor for caffeine based on molecularly imprinted polymethacrylic acid. Sens Actuators B 107:782–790Google Scholar
  112. 112.
    Reddy S, Stevenson D, Hawkins DM Molecular Imprinting of Proteins in Hydrogels. Possibilities for Novel Sensing of Biomolecules. Biosensor & Biomaterials Workshop 2005, Tsukuba, Japan, to be published in The AnalystGoogle Scholar
  113. 113.
    Yoshimi Y, Sekine S, Hattori K, Kohori F, Sakai K Gate Effect: biomimetric receptors synthesized by molecular imprinting. Biosensor & Biomaterials Workshop 2005, Tsukuba, Japan, to be published in The AnalystGoogle Scholar
  114. 114.
    Yang DH, Bae AH, Koumoto K, Lee SW, Sakurai K, Shinkai S (2005) In situ monitoring of polysaccharide-polynucleotide interaction using a schizophyllan-immobilized QCM device. Sens Actuators B 105:490–494Google Scholar
  115. 115.
    Tsai WC, Lin IC (2005) Development of a piezoelectric immunosensor for the detection of alpha-fetoprotein. Sens Actuators B 106:455–460Google Scholar
  116. 116.
    Loergen JW, Kreutz C, Bargon J, Krattiger P, Wennemers H (2005) Diketopiperazine receptors: highly selective layers for gravimetric sensors. Sens Actuators B 107:366–371Google Scholar
  117. 117.
    Boireau W, Zeeh JC, Puig PE, Pompon D (2005) Unique supramolecular assembly of a redox protein with nucleic acids onto hybrid bilayer: towards a dynamic DNA chip. Biosensors, Bioelectron 20:1631–1637Google Scholar
  118. 118.
    Gronewold TM, Glass S, Quandt E, Famulok M (2005) Monitoring complex formation in the blood coagulation cascade using aptamer-coated SAW sensors. Biosens Bioelectron 20:2044–2052Google Scholar
  119. 119.
    Melles E, Anderson H, Wallinder D, Shafqat J, Bergman T, Aastrup T, Jornvall H (2005) Electroimmobilization of proinsulin C-peptide to a quartz crystal microbalance sensor chip for protein affinity purification. Anal Biochem 341:89–93Google Scholar
  120. 120.
    Janshoff A, Steinem C (2005) Label-free detection of protein-ligand interactions by the quartz crystal microbalance. Methods Mol Biol 305:47–64Google Scholar
  121. 121.
    Liu SF, Li JR, Jiang L (2005) Surface modification of platinum quartz crystal microbalance by controlled electrodeless deposition of gold nanoparticles and its enhancing effect on the HS–DNA immobilization. Colloids Surfaces A 257–258:57–62Google Scholar
  122. 122.
    Stengel G, Höök F, Knoll W (2005) Viscoelastic modeling of template-directed DNA synthesis. Anal Chem 77:3709–3714Google Scholar
  123. 123.
    Matsuno H, Furusawa H, Okahata Y (2005) Kinetic studies of DNA cleavage reactions catalyzed by an ATP-dependent deoxyribonuclease on a 27-MHz quartz-crystal microbalance. Biochemistry 44:2262–2270Google Scholar
  124. 124.
    Hur Y, Han J, Seon J, Pak YE, Roh Y (2005) Development of an SH-SAW sensor for the detection of DNA hybridization. Sens Actuators A 120:462–467Google Scholar
  125. 125.
    Mannelli I, Minunni M, Tombelli S, Wang R, Spiriti M, Mascini M (2005) Direct immobilisation of DNA probes for the development of affinity biosensors. Bioelectrochem 66:129–138Google Scholar
  126. 126.
    Tedeschi L, Citti L, Domenici C (2005) An integrated approach for the design and synthesis of oligonucleotide probes and their interfacing to a QCM-based RNA biosensor. Biosens Bioelectron 20:2376–2385Google Scholar
  127. 127.
    Liu S, Liu Y, Li J, Guo M, Nie L, Yao S (2005) Study on the interaction between DNA and protein induced by anticancer drug carboplatin. J Biochem Biophys Methods 63:125–136Google Scholar
  128. 128.
    Alessandrini A, De Renzi V, Berti L, Barak I, Facci P (2005) Chemically homogeneous, silylated surface for effective DNA binding and hybridization. Surface Science 582:202–208Google Scholar
  129. 129.
    Darain F, Park DS, Park JS, Shim YB (2004) Development of an immunosensor for the detection of vitellogenin using impedance spectroscopy. Biosens Bioelectron 19:1245–1252Google Scholar
  130. 130.
    Kurosawa S, Nakamura M, Park JW, Aizawa H, Yamada K, Hirata M (2004) Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. Biosens Bioelectron 20:1134–1139Google Scholar
  131. 131.
    Bonroy K, Friedt JM, Frederix F, Laureyn W, Langerock S, Campitelli A, Sara M, Borghs G, Declerck B, Goddeeris P (2004) Realization and characterization of porous gold for increased protein coverage on acoustic sensors. Anal Chem 76:4299–4306Google Scholar
  132. 132.
    Su X, Zong Y, Richter R, Knoll W (2005) Enzyme immobilization on poly(ethylene-co-acrylic acid) films studied by quartz crystal microbalance with dissipation monitoring. J Colloid Interface Sci 287:35–42Google Scholar
  133. 133.
    Rick J, Chou TC (2005) Imprinting unique motifs formed from protein-protein associations. Anal Chim Acta 542:26–31Google Scholar
  134. 134.
    Li J, Thielemann C, Reuning U, Johannsmann D (2005) Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators: evaluation in the impedance analysis mode. Biosens Bioelectron 20:1333–1340Google Scholar
  135. 135.
    Joseph S, Gronewold TMA, Schlensog MD, Olbrich C, Quandt E, Famulok M, Schirner M (2005) Specific targeting of ultrasound contrast agent (USCA) for diagnostic application: an in vitro feasibility study based on SAW biosensor. Biosens Bioelectron 20:1829–1835Google Scholar
  136. 136.
    Skladal P, Jilkova Z, Svoboda I, Kolar V (2005) Investigation of osteoprotegerin interactions with ligands and antibodies using piezoelectric biosensors. Biosens Bioelectron 20:2027–2034Google Scholar
  137. 137.
    Zhang Y, Wang M, Xie Q, Wen X, Yao S (2005) Monitoring of the interaction of tannin with bovine serum albumin by electrochemical quartz-crystal impedance system and fluorescence spectrophotometry. Sens Actuators B 105:454–463Google Scholar
  138. 138.
    Oshima K, Nakajima H, Takahashi S, Kera Y, Shimomura M, Miyauchi S (2005) Quartz crystal microbalance assay for determination of plasma vitellogenin. Sens Actuators B 105:473–478Google Scholar
  139. 139.
    Michalzik M, Wendler J, Rabe J, Büttgenbach S, Bilitewski U (2005) Development and application of a miniaturised quartz crystal microbalance (QCM) as immunosensor for bone morphogenetic protein-2. Sens Actuators B 105:508–515Google Scholar
  140. 140.
    Prachayasittikul V, Na Ayudhya CI, Hilterhaus L, Hinz A, Tantimongcolwat T, Galla HJ (2005) Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy. Biochem Biophys Res Commun 327:174–182Google Scholar
  141. 141.
    Le Guillou-Buffello D, Helary G, Gindre M, Pavon-Djavid G, Laugier P, Migonney V (2005) Monitoring cell adhesion processes on bioactive polymers with the quartz crystal resonator technique. Biomaterials 26:4197–4205Google Scholar
  142. 142.
    Tomchenko AA, Harmer GP, Marquis BT (2005) Detection of chemical warfare agents using nanostructured metal oxide sensors. Sens Actuators B 108:41–55Google Scholar
  143. 143.
    Si SH, Fung YS, Zhu DR (2005) Improvement of piezoelectric crystal sensor for the detection of organic vapors using nanocrystalline TiO2 films. Sens Actuators B 108:165–171Google Scholar
  144. 144.
    Sun H, Zhang YY, Si SH, Zhu DR, Fung YS (2005) Piezoelectric quartz crystal (PQC) with photochemically deposited nano-sized Ag particles for determining cyanide at trace levels in water. Sens Actuators B 108:925–932Google Scholar
  145. 145.
    Wang H, Wu J, Li J, Ding Y, Shen G, Yu R (2005) Nanogold particle-enhanced oriented adsorption of antibody fragments for immunosensing platforms. Biosens Bioelectron 20:2210–2217Google Scholar
  146. 146.
    Mo ZH, Liang YL, Wang HL, Liu FW, Xue YX (2005) Microgravimetric flow analysis of nucleic acid based on adsorption of nanoparticle-bioconjugate. Anal Bioanal Chem 382:996–1000Google Scholar
  147. 147.
  148. 148.
    Auld BA Acoustic Fields and Waves in Solids vol. 1+2 Krieger Publ. Comp. 1990Google Scholar
  149. 149.
    Tiersten HF (1969) Linear Piezoelectric Plate Vibrations. Plenum, New YorkGoogle Scholar
  150. 150.
    Mason WP (1969) Physical Acoustic and the Properties of Solids. Van Nostrand Co.Google Scholar
  151. 151.
    Rosenbaum JF (1988) Bulk Acoustic Wave Theory and Devices. Artech, BostonGoogle Scholar
  152. 152.
    Nowotny H, Benes E (1970) General one-dimensional treatment of the layered piezoelectric resonator with two electrodes. Electron Lett 6:398–399Google Scholar
  153. 153.
    Krimholtz R, Leedom DA, Matthaei GL (1970) New equivalent circuits for elementary piezoelectric transducers. J Acoust Soc Amer 82:513–521Google Scholar
  154. 154.
    Martin SJ, Granstaff VE, Frye GC (1991) Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal Chem 63:2272–2281Google Scholar
  155. 155.
    Johannsmann D, Mathauer K, Wegner G, Knoll W (1992) Viscoelastic properties of thin films probed with a quartz-crystal resonator. Phys Rev B 46:7808–7815Google Scholar
  156. 156.
    Granstaff VE, Martin SJ (1994) Characterization of a thickness-shear mode quartz resonator with multiple nonpiezioelectric layers. J Appl Phys 75:1319–1329Google Scholar
  157. 157.
    Martin SJ, Frye GC, Senturia SD (1994) Dynamics and response of polymer-coated surface acoustic wave devices: effect of viscoelastic properties and film resonance. Anal Chem 66:2201–2219Google Scholar
  158. 158.
    Behling C, Lucklum R, Hauptmann P (1998) Response of quartz-crystal resonators to gas and liquid analyte exposure. Sens Actuators A 68:388–398Google Scholar
  159. 159.
    Bandey HL, Martin SJ, Cernosek RW (1999) Modeling the response of thickness-shear mode resonators under various loading conditions. Anal Chem 71:2205–2214Google Scholar
  160. 160.
    Lucklum R, Behling C, Hauptmann P (1999) Role of mass accumulation and iscoelastic film properties for the response of acoustic-wave-based chemical sensors. Anal Chem 71:2488–2496Google Scholar
  161. 161.
    Lucklum R, Hauptmann P (2000) The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification. Sens Actuators B 70:30–36Google Scholar
  162. 162.
    Behling C, Lucklum R, Hauptmann P (1997) Possibilities and limitations in quantitative determination of polymer shear parameters by TSM resonators. Sensors and Actuators A 61:260–266Google Scholar
  163. 163.
    Rodahl M, Kasemo B (1996) Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode. Sens Actuators B 37:111–116Google Scholar
  164. 164.
    Behling C, Lucklum R, Hauptmann P (1998) The non-gravimetric quartz crystal resonator response and its application for polymer shear moduli determination. Meas Sci Technol 9:1886–1893Google Scholar
  165. 165.
    Lucklum R, Behling C, Hauptmann P (2001) Signal amplification with multilayer arrangements on chemical quartz-crystal-resonator sensors. IEEE Trans Ultrason Ferroel Freq. Contr 47:1246–1252Google Scholar
  166. 166.
    Dormack A, Prucker O, Rühe J, Johannsmann D (1997) Swelling of a polymer brush probed with a quartz crystal resonator. Phys Rev E 56:680–689Google Scholar
  167. 167.
    Lucklum R, Hauptmann P (2003) Transduction mechanism of acoustic-wave based chemical and biochemical sensors. Meas Sci Technol 14:1854–1864Google Scholar
  168. 168.
    Lucklum R (2005) Non-Gravimetric Contributions to QCR Sensor Response. Analyst 130:1465–1473Google Scholar
  169. 169.
    Voinova MV, Jonson M, Kasemo B (2002) ’Missing mass’ effect in biosensor’s QCM application. Biosens Bioelectron 17:835–841Google Scholar
  170. 170.
    Duncan-Hewitt WC, Thompson M (1992) Four-layer theory for the acoustic shear wave sensor in liquids incorporating interfacial slip and liquid structure. Anal Chem 64:94-105Google Scholar
  171. 171.
    Mak C, Daly C, Krim J (1994) Atomic-scale friction measurements on silver and chemisorbed oxygen surfaces. Thin Solid Films 253:190–193Google Scholar
  172. 172.
    Rodahl M, Kasemo B (1996) On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sens Actuators A 54:448–456Google Scholar
  173. 173.
    Hayward GL, Thompson M (1998) A transverse shear model of a piezoelectric chemical sensor. J Appl Phys 83:2194–2201Google Scholar
  174. 174.
    McHale G, Lucklum R, Newton MI, Cowen JA, Hauptmann P (2000) Influence of viscoelasticity and interfacial slip on acoustic wave sensors. J Appl Phys 88:7304–7312Google Scholar
  175. 175.
    Daikhin L, Gileadi E, Tsionsky V, Urbakh M, Zilberman G (2000) Slippage at adsorbate-electrolyte interface response of electrochemical quartz crystal microbalance to adsorption. Electrochim Acta 45:3615–3621Google Scholar
  176. 176.
    Ellis JS, McHale G, Hayward GL, Thompson M (2003) Contact angle-based predictive model for slip at the solid-liquid interface of a transverse-shear mode acoustic wave device. J Appl Phys 94:6201–6207Google Scholar
  177. 177.
    Ponomarev IV, Meyerovich AE (2003) Surface roughness and effective stick-slip motion. Phys Rev E 67:026302, 1–12Google Scholar
  178. 178.
    Theissen LA, Martin SJ, Hillman AR (2004) A model for the quartz crystal microbalance frequency response to wetting characteristics of corrugated surfaces. Anal Chem 76:796–804Google Scholar
  179. 179.
    Du B, Goubaidoulline I, Johannsmann D (2004) Effects of laterally heterogeneous slip on the resonance properties of quartz crystals immersed in liquids. Langmuir 24:10617–10624Google Scholar
  180. 180.
    Knoll W, Frank CW, Heibel C, Naumann R, Offenhäusser A, Rühe J, Schmidt EK, Shen WW, Sinner A (2000) Functional tethered lipid bilayers. Rev Molecular Biotechnol 74b:137–158Google Scholar
  181. 181.
    Boulbitch A, Guttenberg Z, Sackmann E (2001) Kinetics of Membrane Adhesion Mediated by Ligand-Receptor Interaction Studied with Biomimetic System. Biophys J 81:2743–2751Google Scholar
  182. 182.
    Cheng J-X, Pautot S, Weitz DA, Xie XS (2003) Ordering of water molecules between phospholipids bilayers visualized by coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci U S A 100:9826–9830Google Scholar
  183. 183.
    Goennenwein S, Tanaka M, Hu B, Moroder L, Sackmann E (2003) Functional incorporation of integrins into solid supported membranes on ultrathin films of cellulose: impact on adhesion. Biophys J 85:646–655CrossRefGoogle Scholar
  184. 184.
    Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Satija S, Majewski J (2005) Influence of the electric field on a bio-mimetic film supported on a gold electrode. Colloids Surf B 40:117–122Google Scholar
  185. 185.
    Martin SJ, Frye GF (1991) Polymer film characterization using quartz resonators. IEEE Ultrason Symp Proceedings 393–398Google Scholar
  186. 186.
    Katz A, Ward MD (1996) Probing solvent dynamics in concentrated polymer films with a high frequency shear mode quartz resonator. J Appl Phys 80:4152–4163Google Scholar
  187. 187.
    Lucklum R, Behling C, Cernosek RW, Martin SJ (1997) Determination of complex shear modulus with thickness shear mode resonators. J Phys D Appl Phys 30:346–356Google Scholar
  188. 188.
    Lucklum R, Behling C, Hauptmann P, Cernosek RW, Martin SJ (1998) Error analysis of material parameter determination with quartz-crystal resonators. Sens Actuators A 66:184–192Google Scholar
  189. 189.
    Behling C, Lucklum R, Hauptmann P (1999) Fast three-step method for shear moduli calculation from quartz crystal resonator measurements. IEEE Trans Ultrason Ferroelec Freq Contr 46:1431–1438Google Scholar
  190. 190.
    Johannsmann D (1999) Viscoelastic analysis of organic thin films on quartz resonators. Macromol Chem Phys 200:501–516Google Scholar
  191. 191.
    Lucklum R, Hauptmann P Thin film shear modulus determination with quartz crystal resonators: a review 2001 IEEE Int Freq Contr Symp Proceedings 408–418Google Scholar
  192. 192.
    Garrell RL, Chadwick JE (1994) Structure, reactivity and microrheology in self-assembled monolayers. Colloids Surf A 93:59–72Google Scholar
  193. 193.
    Bund A, Schwitzgebel G (1998) Viscoelastic Properties of Low-Viscosity Liquids Studied with Thickness-Shear Mode Resonators. Anal Chem 70:2584–2588Google Scholar
  194. 194.
    Berg S, Johannsmann D (2003) High speed microtribology with quartz crystal resonators. Phys Rev Lett 91:145505, 1–4Google Scholar
  195. 195.
    Abdelmaksoud M, Bender JW, Krim J (2004) Bridging the gap between macro- and nanotribology: a quartz crystal microbalance study of tricresylphosphate uptake on metal and oxide surfaces. Phys Rev Lett 92:176101 1–4Google Scholar
  196. 196.
    Cavic BA, Thompson M (2002) Interfacial nucleic acid chemistry studied by acoustic wave propagation. Anal Chim Acta 469:101–113Google Scholar
  197. 197.
    Bailey LE, Kambhampati D, Kanazawa KK, Knoll W, Frank CW (2002) Using surface plasmon resonance and the quartz crystal microbalance to monitor in situ the interfacial behavior of thin organic films. Langmuir 18:479–489Google Scholar
  198. 198.
    Schlatt-Masuth B, Hempel U, Lucklum R, Hauptmann P (2004) QCR response to attachment processes of particles IEEE Sensors. Proceedings 790–793Google Scholar
  199. 199.
    Ellis J, Thompson M (2005) Signals from the acoustic shear wave biosensor explained. 345. WE–Heraeus Seminar. Acoustic Wave Based Sensors: Fundamentals, Concepts, New ApplicationsGoogle Scholar
  200. 200.
    Wolff O, Seydel E, Johannsmann D (1997) Viscoelastic properties of thin films studied with quartz crystal resonators. Faraday Disc 107:91–104Google Scholar
  201. 201.
    Johannsmann, D (2001) Derivation of the shear compliance of thin films on quartz resonators from comparison of the frequency shifts on different harmonics: a perturbation analysis. J Appl Phys 89:6356–6364Google Scholar
  202. 202.
    Yoshimoto M, Tokimura S, Shigenobu K, Kurosawa S, Naito M (2004) Properties of the overtone mode of the quartz crystal microbalance in a low-viscosity liquid. Anal Chim Acta 510:15–19Google Scholar
  203. 203.
    Hempel U, Schlatt-Masuth B, Lucklum R, Hauptmann P (2004) QCR response to formation process of nanoparticles Eurosensors XVIII Techn Digest 150–151 CD:A5_3, pp 1–4Google Scholar
  204. 204.
    Hillman AR, Jackson A, Martin SJ (2001) The problem of uniqueness of fit for viscoelastic films on thickness shear mode resonator surfaces. Anal Chem 73:540–549Google Scholar
  205. 205.
    Martin SJ, Frye GC, Ricco AJ, Senturia SD (1993) Effect of surface roughness on the response of thickness shear mode resonators in liquids. Anal Chem 65:2910–2922Google Scholar
  206. 206.
    Urbakh M, Daikhin L (1998) Surface morphology and the quartz crystal microbalance response in liquids. Colloids Surf A 134:75–84Google Scholar
  207. 207.
    Daikhin L, Gileadi E, Katz G, Tsionsky V, Urbakh M, Zagidulin D (2002) Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids. Anal Chem 74:554–561Google Scholar
  208. 208.
    Kuroiwa M, Nakazawa M (2002) An analysis of plate surface roughness effect for AT-cut resonators, IEEE Frequency Control Symposium Proceedings 242–247Google Scholar
  209. 209.
    EerNisse EP (1972) Simultaneous Thin-Film Stress and Mass-Change Measurements Using Quartz Resonators. J Appl Phys 43:1330–1337Google Scholar
  210. 210.
    Barthé PG, Benkeser PJ (1987) A staircase model of tapered piezoelectric transducers. IEEE Ultrason Symp Proceedings 697–700Google Scholar
  211. 211.
    Martin BA, Hager HE (1989) Velocity profile on quartz crystals oscillating in liquids. J Appl Phys 65:2630–2635Google Scholar
  212. 212.
    Tessier L, Patat F, Schmitt N, Feuillard G, Thompson M (1994) Effect of the generation of compressional waves on the response of the thickness-shear mode acoustic wave sensor in liquids. Anal Chem 66:3569–3574Google Scholar
  213. 213.
    Lin Z, Ward MD (1995) The role of longitudinal waves in quartz crystal microbalance applications. Anal Chem 67:685–693Google Scholar
  214. 214.
    Schneider TW, Martin SJ (1995) Influence of compressional wave generation on thickness-shear mode resonator response in a fluid. Anal Chem 67:3324–3335Google Scholar
  215. 215.
    Lucklum R, Schranz S, Behling C, Eichelbaum F, Hauptmann P (1997) Analysis of compressional-wave influence on thickness-shear-mode resonators in liquids. Sens Actuators A 60:40–48Google Scholar
  216. 216.
    Mc Kenna L, Newton MI, McHale G, Lucklum R, Schroeder J (2001) Compressional acoustic wave generation in microdroplets of water in contact with quartz crystal resonators. J Appl Phys 89:676–680Google Scholar
  217. 217.
    Lucklum R, Hauptmann P (2002) Generalized Acoustic Parameters of Non-Homogeneous Thin Films IEEE Int Freq Contr Symp Proceedings 234–241Google Scholar
  218. 218.
    Ricco AJ, Martin SJ, Zipperian TE (1985) Surface acoustic wave gas sensor based on film conductivity changes. Sensors Actuators 8:319–333Google Scholar
  219. 219.
    Shana ZA, Zong H, Josse F, Jeutter DC (1994) Analysis of electrical equivalent circuit of quartz crystal resonator loaded with viscous conductive liquids. J Electroanal Chem 379:21–33Google Scholar
  220. 220.
    Shana ZA, Josse F (1994) Quartz crystal resonators as sensors in liquids using the acoustoelectric effect. Anal Chem 66:1955–1964Google Scholar
  221. 221.
    Lee Y, Everhart D, Josse F (1996) The quartz crystal resonator as a detector of electrical loading: An analysis of sensing mechanism IEEE Int Freq Contr Symp Proceedings 577–585Google Scholar
  222. 222.
    Ghafouri S, Thompson M (2001) Electrode modification and the response of the acoustic shear wave device operating in liquids. Analyst 126:2159–2167Google Scholar
  223. 223.
    Zhang C, Vetelino J (2001) A bulk acoustic wave resonator for sensing liquid electrical property changes IEEE Int Freq Contr Symp Proceedings 535–541Google Scholar
  224. 224.
    Lee PCY (1989) Electromagnetic radiation from an AT-cut quartz plate under lateral-field excitation. J Appl Phys 65:1395–1399Google Scholar
  225. 225.
    Hu Y, French LA Jr, Radecsky K, da Cunha MP, Millard P, Vetelino JF (2004) A lateral field excited liquid acoustic wave sensor. Trans Ultrason Ferroelectr Freq Contr 51:1373–1380Google Scholar
  226. 226.
    Hu Y, Pinkham W, French LA Jr, Frankel D, Vetelino JF (2005) Pesticide detection using a lateral field excited acoustic wave sensor. Sens Actuators B 108:910–916Google Scholar
  227. 227.
    Bjurström J, Katardjiev I, Yantchev V (2005) Lateral-field-excited thin-film Lamb wave resonator. Appl Phys Lett 86:154103–154105Google Scholar
  228. 228.
    Laschitsch A, Menges B, Johannsmann D (2000) Simultaneous determination of optical and acoustic thicknesses of protein layers using surface plasmon resonance spectroscopy and quartz crystal microweighing. Appl Phys Lett 77:2252–2254Google Scholar
  229. 229.
    Kim J, Yamasaki R, Park J, Jung H, Lee H, Kawai T (2004) Highly dense protein layers confirmed by atomic force microscopy and quartz crystal microbalance. J Bioscience Bioeng 97:138–140Google Scholar
  230. 230.
    Smith AL, Shirazi HM (2005) Principles of quartz crystal microbalance/heat conduction calorimetry: measurement of the sorption enthalpy of hydrogen in palladium. Thermochim Acta 432:202–211Google Scholar
  231. 231.
    Shevade AV, Ryan MA, Homer ML, Kisor AK, Manatt KS, Lin B, Fleurial JP, Manfred AM, Yen SPS (2005) Calorimetric measurements of heat of sorption in polymer films: A molecular modeling and experimental study. Anal Chim Acta 543:242–248Google Scholar
  232. 232.
    Fadel L, Zimmermann C, Dufour I, Dejous C, Rebiere D, Pistre J (2005) Coupled determination of gravimetric and elastic effects on two resonant chemical sensors: love wave and microcantilever platforms. IEEE Trans Ultrason Ferroelectr Freq Contr 52:297–303Google Scholar
  233. 233.
    Su X, Wu YJ, Robelek R, Knoll W (2005) Surface plasmon resonance spectroscopy and quartz crystal microbalance study of MutS binding with single thymine-guanine mismatched DNA. Front Biosci 10:268–274Google Scholar
  234. 234.
    Su XX, Wu YJ, Robelek R, Knoll WW (2005) Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir 21:348–353Google Scholar
  235. 235.
    Zhang H, Zhao R, Chen Z, Shangguan DH, Liu G (2005) QCM–FIA with PGMA coating for dynamic interaction study of heparin and antithrombin III. Biosens Bioelectron 21:121–127Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute for Micro and Sensor Systems (IMOS)Otto-von-Guericke-University, MagdeburgMagdeburgGermany

Personalised recommendations