Advertisement

Analytical and Bioanalytical Chemistry

, Volume 384, Issue 3, pp 658–666 | Cite as

Multiplexed SNP genotyping using nanobarcode particle technology

  • Michael Y. Sha
  • Ian D. Walton
  • Scott M. Norton
  • Micah Taylor
  • Mark Yamanaka
  • Michael J. Natan
  • Chongjun Xu
  • Snezana Drmanac
  • Steve Huang
  • Adam Borcherding
  • Radoje Drmanac
  • Sharron G. Penn
Technical Note

Abstract

Single-nucleotide polymorphisms (SNP) are the most common form of sequence variation in the human genome. Large-scale studies demand high-throughput SNP genotyping platforms. Here we demonstrate the potential of encoded nanowires for use in a particles-based universal array for high-throughput SNP genotyping. The particles are encoded sub-micron metallic nanorods manufactured by electroplating inert metals such as gold and silver into templates and releasing the resulting striped nanoparticles. The power of this technology is that the particles are intrinsically encoded by virtue of the different reflectivity of adjacent metal stripes, enabling the generation of many thousands of unique encoded substrates. Using SNP found within the cytochrome P450 gene family, and a universal short oligonucleotide ligation strategy, we have demonstrated the simultaneous genotyping of 15 SNP; a format requiring discrimination of 30 encoded nanowires (one per allele). To demonstrate applicability to real-world applications, 160 genotypes were determined from multiplex PCR products from 20 genomic DNA samples.

Keywords

SNP genotyping Nanowires Cytochrome P450 Encoded particles Nanotechnology 

Notes

Acknowledgements

We would like to thank Glenn Davis for developing the NBSee Software and SNP database software for nanowire decoding and SNP data analysis, Griff Freeman, Frances Wong, Barry Simkins, and Gabriela Chakarova for expertise in nanowire synthesis, and Jay Shafto for help in robotic probe handling and probe validation. This work was funded by the National Institute of Standards and Technology (Grant 70NANB1H3028).

References

  1. 1.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Francesco VD, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang ZY, Wang A, Wang X, Wang J, Wei MH, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu SC, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays AD, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, and Nodell M (2001) Science 291:1304–1351CrossRefGoogle Scholar
  2. 2.
    Morgan MJ (2001) Nature 409:860–921CrossRefGoogle Scholar
  3. 3.
    Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D (2001) Nature 409:928–933CrossRefGoogle Scholar
  4. 4.
    Kwok PY, Chen X (2003) Curr Issues Mol Bio 5:43–60Google Scholar
  5. 5.
    Brennan MD (2001) Am J Pharmacogenomics 1:295–302CrossRefGoogle Scholar
  6. 6.
    Twyman RM (2004) Curr Top Med Chem 4:1423–1431CrossRefGoogle Scholar
  7. 7.
    Dearlove AM (2002) Brief Funct Genomic Proteomic 1:139–150CrossRefGoogle Scholar
  8. 8.
    Chen J, Iannone MA, Li MS, Taylor JD, Rivers P, Nelsen AJ, Slentz-Kesler KA, Roses A, Weiner MP (2000) Genome Res 10:549–557CrossRefGoogle Scholar
  9. 9.
    Taylor JD, Briley D, Nguyen Q, Long K, Iannone MA, Li MS, Ye F, Afshari A, Lai E, Wagner M, Chen J, Weiner MP (2001) Biotechniques 30:661–669Google Scholar
  10. 10.
    Ye F, Li MS, Taylor JD, Nguyen Q, Colton HM, Casey WM, Wagner M, Weiner MP, Chen J (2001) Human Mutat 17:305–316CrossRefGoogle Scholar
  11. 11.
    Landegren U, Kaiser R, Sanders J, Hood L (1988) Science 241:1077–1088CrossRefGoogle Scholar
  12. 12.
    Iannone MA, Taylor JD, Chen J, Li MS, Rivers P, Slentz-Kesler KA, Weiner MP (2000) Cytometry 39:131–140CrossRefGoogle Scholar
  13. 13.
    Xu H, Sha M-Y, Wang E, Uphoff J, Xu Y, Treadway J, Truong A, O’Brien E, Asquith S, Stubbins M, Spurr N, Lai E, Mahoney WC (2003) Nucleic Acids Res. 31:e43CrossRefGoogle Scholar
  14. 14.
    Barker DL, Hansen MST, Faruqi AF, Giannola D, Irsula OR, Lasken RS, Latterich M, Makarov V, Oliphant A, Pinter JH, Shen R, Sleptsova I, Ziehler W, Lai E (2004) Genome Res. 14:901–907CrossRefGoogle Scholar
  15. 15.
    Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, Zhao C, Che D, Dickinson T, Wickham E, Bierle J, Doucet D, Milewski M, Yang R, Siegmund C, Haas J, Zhou L, Oliphant A, Fan JB, Barnard S, Chee MS (2004) Genome Res 14:870–877CrossRefGoogle Scholar
  16. 16.
    Evans M, Sewter C, Hill E (2004) Assay Drug Dev Technol 1:199–207CrossRefGoogle Scholar
  17. 17.
    Penn SG, He L, Natan MJ (2003) Curr Opin Chem Biol 7:609–615CrossRefGoogle Scholar
  18. 18.
    Drmanac R, Drmanac S, Chui G, Diaz R, Hou A, Jin H, Jin P, Kwon S, Lacy S, Moeur B, Shafto J, Swanson D, Ukrainczyk T, Xu C, Little D (2002) Advances in Biochemical Engineering/Biotechnology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. 19.
    Nicewarner-Pena SR, Freeman G, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Science 294:137–141CrossRefGoogle Scholar
  20. 20.
    Reiss BD, Keating CD, Freeman RG, Walton ID, Norton SM, Smith PC, Stonas WG, Natan MJ (2002) J Electroanal Chem 522:95–103CrossRefGoogle Scholar
  21. 21.
    Walton ID, Norton SM, Balasingham A, He L, Oviso DFJ, Gupta D, Raju PA, Natan MJ, Freeman RG (2002) Anal Chem 74:2240–2247CrossRefGoogle Scholar
  22. 22.
    Thomas FJ, McLeod HL, Watters JW (2004) Curr Top Med Chem 4:1399–1409Google Scholar
  23. 23.
    Gura T (2001) Science 293:595CrossRefGoogle Scholar
  24. 24.
    Erichsen HC, Chanock SJ (2004) Br J Cancer 90:747–751CrossRefGoogle Scholar
  25. 25.
    Danielson PB (2002) Curr Drug Metab 3:561–597CrossRefGoogle Scholar
  26. 26.
    Pickering JW, McMillen G.A., Gedge F, Hill HR, Lyon E (2004) Am J Pharmacogenomics 4:199–207CrossRefGoogle Scholar
  27. 27.
    Lai E (2001) Genome Res 11:927–929CrossRefGoogle Scholar
  28. 28.
    Finkel NH, Lou X, Wang C, He L (2004) Anal Chem 76:352A–359ACrossRefGoogle Scholar
  29. 29.
    Chen J, Iannone MA, Li MS, Taylor JD, Rivers P, Nelsen AJ, Slentz-Kesler KA, Roses A, Weiner MP (2000) Genome Res 10:549–557CrossRefGoogle Scholar
  30. 30.
    Hardenbol P, Baner J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, Fakhrai-Rad H, Ronaghi M, Willis TD, Landegren U, Davis RW (2003) Nature Biotechnology 21:673–678CrossRefGoogle Scholar
  31. 31.
    van Eijk MJT, Broekhof JLN, van der Poel HJA, Hogers RCJ, Schneiders H, Kamerbeek J, Verstege E, van Aart JW, Geerlings H, Buntjer JB, van Oeveren AJ, Vos P (2004) Nucl Acids Res 32:e47CrossRefGoogle Scholar
  32. 32.
    Barker DL, Hansen MST, Faruqi AF, Giannola D, Irsula OR, Lasken RS, Latterich M, Makarov V, Oliphant A, Pinter JH, Shen R, Sleptsova I, Ziehler W, Lai E (2004) Genome Res 14:901–907CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michael Y. Sha
    • 1
  • Ian D. Walton
    • 1
  • Scott M. Norton
    • 1
  • Micah Taylor
    • 1
  • Mark Yamanaka
    • 1
  • Michael J. Natan
    • 1
  • Chongjun Xu
    • 2
  • Snezana Drmanac
    • 2
  • Steve Huang
    • 2
  • Adam Borcherding
    • 2
  • Radoje Drmanac
    • 2
  • Sharron G. Penn
    • 1
  1. 1.Nanoplex Technologies IncMountain ViewUSA
  2. 2.Callida GenomicsSunnyvaleUSA

Personalised recommendations