Analytical and Bioanalytical Chemistry

, Volume 384, Issue 1, pp 180–190 | Cite as

Optimizing integrated optical chips for label-free (bio-)chemical sensing

Original Paper


Label-free sensing is an important method for many (bio-)chemical applications in fields such as biotechnology, medicine, pharma, ecology and food quality control. The broad range of applications includes liquid refractive index sensing, molecule detection, and the detection of particles or cells. Integrated optics based on the use of waveguide modes offers a great potential and flexibility to tailor the sensor properties to these applications. In this paper, the results of a numerical study are presented, showing that this flexibility is founded on the many degrees of freedom that can be used for the integrated optical chip design, in contrast to other technologies such as those based on surface plasmon resonance, for which the materials' properties limit the range of choices. The applications that are explicitly considered and discussed include (1) bulk refractometry, (2) thin-layer sensing, for example biosensors monitoring molecular adsorption processes occurring within some 10 nm of the chip's surface, (3) thick-layer sensing with processes involving molecules or ions to be monitored within a sensing matrix extending to some 100 nm from the chip's surface, for example hydrogel-based layers and chemo-optically sensitive membranes, and (4) particle sensing with particles or, for example, biological cells to be monitored within probe volumes extending to some 1,000 nm from the chip's surface. The peculiarities for the different types of applications will be discussed, and suitable modeling methods presented. Finally, the application-specific design guidelines supplied will enable the optimization of various types of integrated optical sensors, including interferometers and grating-based sensors.


Label-free sensing (Bio-)chemical sensors Evanescent-wave sensors Integrated optical sensor chip Waveguides 



We gratefully thank Guy Voirin for helpful discussions.


  1. 1.
    Homola J, Yee SS, Gauglitz G (1999) Sens Actuators B 54:3–15CrossRefGoogle Scholar
  2. 2.
    Nagata K, Handa H (2000) (eds) Real-time analysis of biomolecular interactions: applications of Biacore. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Cooper MA (2002) Nat Rev 1:515–528Google Scholar
  4. 4.
    Tiefenthaler K, Lukosz W (1989) J Opt Soc Am B 6:209–220CrossRefGoogle Scholar
  5. 5.
    Lukosz W (1991) Biosens Bioelectron 6:215–225CrossRefGoogle Scholar
  6. 6.
    Heideman RG, Kooyman RPH, Greve J (1993) Sens Actuators B 10:209–217CrossRefGoogle Scholar
  7. 7.
    Clerc D, Lukosz W (1997) Biosens Bioelectron 12:185–194CrossRefGoogle Scholar
  8. 8.
    Kunz RE, Duveneck G, Ehrat M (1994) Proc SPIE 2331:2–17CrossRefGoogle Scholar
  9. 9.
    Kunz RE (1999) In: Murphy EJ (ed) Integrated optical circuits and components. Dekker, New York, pp 335–380Google Scholar
  10. 10.
    Wiki M (2000) Integrated optical sensor micro-systems based on disposable transducers. PhD thesis no 2177, Swiss Federal Institute of Technology, Lausanne (EPFL)Google Scholar
  11. 11.
    Wiki M, Kunz RE (2000) Opt Lett 25:463–465CrossRefGoogle Scholar
  12. 12.
    Ymeti A, Kanger JS, Wijn R, Lambeck PV, Greve J (2002) Sens Actuators B 83:1–7CrossRefGoogle Scholar
  13. 13.
    Höök F, Rodahl M, Vörös J, Kurrat R, Böni P, Ramsden JJ, Textor M, Spencer ND, Tengvall P, Gold J, Kasemo B (2002) Colloids Surf B 24:155–170CrossRefGoogle Scholar
  14. 14.
    Horvath R, Pedersen HC (2002) Appl Phys Lett 81:2166–2168CrossRefGoogle Scholar
  15. 15.
    Horvath R, Pedersen HC, Skivesen N, Selmeczi D, Larsen NB (2003) Opt Lett 28:1233–1235PubMedCrossRefGoogle Scholar
  16. 16.
    Cottier K, Wiki M, Voirin G, Gao H, Kunz RE (2003) Sens Actuators B 91:241–251CrossRefGoogle Scholar
  17. 17.
    Kunz RE, Duebendorfer J, Morf RH (1996) Biosens Bioelectron 11:653–667CrossRefGoogle Scholar
  18. 18.
    Parriaux O, Veldhuis GJ (1998) J Lightwave Technol 16:573–582CrossRefGoogle Scholar
  19. 19.
    Brioude V, Parriaux O (2000) Opt Quantum Electron 32:899–908CrossRefGoogle Scholar
  20. 20.
    Veldhuis GJ, Parriaux O, Hoekstra HJWM, Lambeck PV (2000) J Lightwave Technol 18:677–682CrossRefGoogle Scholar
  21. 21.
    Cottier K, Kunz RE, Herzig HP (2004) Jpn J Appl Phys 43:5742–5746CrossRefGoogle Scholar
  22. 22.
    Li PY, Lin B, Gerstenmaier J, Cunningham BT (2004) Sens Actuators B 99:6–13CrossRefGoogle Scholar
  23. 23.
    Swann MJ, Peel LL, Carrington S, Freeman NJ (2004) Anal Biochem 329:190–198CrossRefPubMedGoogle Scholar
  24. 24.
    Horvath R, Vörös J, Graf R, Fricsovsky G, Textor M, Lindvold LR, Spencer ND, Papp E (2001) Appl Phys B 72:441–447Google Scholar
  25. 25.
    Horvath R, Pedersen HC, Skivesen N, Selmeczi D, Larsen NB (2005) Appl Phys Lett 86:071101–071103CrossRefGoogle Scholar
  26. 26.
    Kunz RE (1992) Proc SPIE 1587:98–113CrossRefGoogle Scholar
  27. 27.
    Kunz RE (1993) Sens Actuators B 11:167–176CrossRefGoogle Scholar
  28. 28.
    Zappe HP, Arnot HEG, Kunz RE (1994) Sens Mater 6:261–270Google Scholar
  29. 29.
    Kunz RE (1997) Sens Actuators B 38:13–28CrossRefGoogle Scholar
  30. 30.
    Dübendorfer J, Kunz RE (1997) Sens Actuators B 38:116–121CrossRefGoogle Scholar
  31. 31.
    Dübendorfer J, Kunz RE, Mader E, Duveneck GL, Ehrat M (1996) Proc SPIE 2928:90–97CrossRefGoogle Scholar
  32. 32.
    Dübendorfer J, Kunz RE, Schürmann E, Duveneck GL, Ehrat M (1997) J Biomed Opt 2:391–400CrossRefGoogle Scholar
  33. 33.
    Kunz RE, Gu JS (1993) In: Proceedings of the 6th European conference on integrated optics ECIO'93, Neuchâtel, Switzerland, pp 14–37Google Scholar
  34. 34.
    Freiner D, Kunz RE, Citterio D, Spichiger UE, Gale MT (1995) Sens Actuators B 29:277–285CrossRefGoogle Scholar
  35. 35.
    Cottier K, Kunz RE, Voirin G, Wiki M (2002) Proc SPIE 4616:53–63CrossRefGoogle Scholar
  36. 36.
    Kunz RE, Kempen LU (1994) Proc SPIE 2068:69–86CrossRefGoogle Scholar
  37. 37.
    Dübendorfer J, Kunz RE, Jobst G, Moser I, Urban G (1998) Sens Actuators B 50:210–219CrossRefGoogle Scholar
  38. 38.
    Kunz RE, Du CL, Edlinger J, Pulker HK, Seifert M (1991) Sens Actuators A 25:155–159CrossRefGoogle Scholar
  39. 39.
    Nellen PM, Lukosz W (1993) Biosens Bioelectron 8:129–147CrossRefGoogle Scholar
  40. 40.
    Lukosz W (1997) Biosens Bioelectron 12:175–184CrossRefGoogle Scholar
  41. 41.
    Born M, Wolf E (1980) Principles of optics, 6th edn. Pergamon, New York, pp 705–708Google Scholar
  42. 42.
    Moreno E, Erni D, Hafner C, Kunz RE, Vahldieck R (2002) Opt Quantum Electron 34:1051–1069CrossRefGoogle Scholar
  43. 43.
    Lalanne P, Morris GM (1996) J Opt Soc Am 13:779–784Google Scholar
  44. 44.
    Tishchenko AV (2000) Opt Quantum Electron 32:971–980CrossRefGoogle Scholar
  45. 45.
    Cottier K (2004) Advanced label-free biochemical sensors based on integrated optical waveguide gratings: theory, modeling, design and characterization. PhD thesis, University of Neuchâtel, SwitzerlandGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Centre Suisse d'Electronique et de Microtechnique SA (CSEM)NeuchâtelSwitzerland
  2. 2.Optrel AGWattwilSwitzerland

Personalised recommendations