Analytical and Bioanalytical Chemistry

, Volume 384, Issue 2, pp 468–474 | Cite as

Double-layer Tedlar bags: a means to limit humidity evolution of air samples and to dry humid air samples

  • Stephane Cariou
  • Jean-Michel GuillotEmail author
Original Paper


Tedlar bags, which are widely used to collect air samples, especially VOCs and odorous atmospheres, can allow humidity to diffuse when relative humidity levels differ between the inside and outside. Starting with dry air inside the bag and humid air outside, we monitored equilibrium times under several conditions showing the evolution and influence of collected volumes and exposed surfaces. A double-film Tedlar bag was made, to limit the impact of external humidity on a sample at low humidity level. With the addition of a drying agent between both films, the evolution of humidity of a sample can be stopped for several hours. When a VOC mixture was monitored in a humid atmosphere, humidity was decreased but no significant evolution of VOC concentrations was observed.


Tedlar bags Air sampling Humidity Sample evolution VOC 


  1. 1.
    Colon M, Pleil JD, Hartlage TA, Lucia Guardani M, Helena Martins M (2001) Atmos Environ 35:4017–4031CrossRefGoogle Scholar
  2. 2.
    Batterman SA, Zhang G-Z, Baumann M (1998) Atmos Environ 32:1647–1655CrossRefGoogle Scholar
  3. 3.
    Rosen RT, Hiserodt RD, Fukuda EK, Ruiz RJ, Zhou Z, Lech J, Rosen SL, Hartman TG (2001) J Nutr 131:968S–971SPubMedGoogle Scholar
  4. 4.
    Zhang J, Smith KR, Ma Y, Ye S, Jiang F, Qi W, Liu P, Khalil MAK, Rasmussen RA, Thorneloe SA (2000) Atmos Environ 34:4537–4549CrossRefGoogle Scholar
  5. 5.
    European Committee for Standardization (1999) Air quality—determination of odor concentration by dynamic olfactometry. EN 13725Google Scholar
  6. 6.
    Hoshika Y, Nishikitani M, Yokoyama K, Araki S (1997) Anal Sci 13:505–508Google Scholar
  7. 7.
    Van Harreveld AP (2003) J Air Waste Manage 53:51–60Google Scholar
  8. 8.
    Lee JH, Hwang SM, Lee D W, Heo GS (2002) B Kor Chem Soc 23:488–496CrossRefGoogle Scholar
  9. 9.
    Choi YG, Ko DH, Kim HJ, Chung TH (2004) Water Sci Technol 49:329–334PubMedGoogle Scholar
  10. 10.
    McGarvey LJ, Shorten CV (2000) AIHA J 61:375–380Google Scholar
  11. 11.
    Fan ZH, Zhang JF, Fan CW, Pennise DM (2001) J Air Waste Manage 51:60–68Google Scholar
  12. 12.
    Sulyok M, Haberhauer-Troyer C, Rosenberg E, Grasserbauer M (2001) J Chromatogr A 917:367–374CrossRefPubMedGoogle Scholar
  13. 13.
    Koziel JA, Pawliszyn J (2001) J Air Waste Manage 51:173–184Google Scholar
  14. 14.
    Tuduri L, Desauziers V, Fanlo JL (2003) Analyst 128:1028–1032CrossRefPubMedGoogle Scholar
  15. 15.
    Lestremau F, Desauziers V, Fanlo JL (2004) Anal Bioanal Chem 378:190–196CrossRefPubMedGoogle Scholar
  16. 16.
    Lattuati-Derieux A, Bonnassies-Termes S, Lavedrine B (2004) J Chromatogr A 1026:9–18CrossRefPubMedGoogle Scholar
  17. 17.
    Tuduri L (2002) Analyse de traces de composés organiques volatils dans l'air par microextraction sur phase solide. Université de Pau et des Pays de l'AdourGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Ecole des Mines d’Alès, LGEIAlès CedexFrance

Personalised recommendations