Advertisement

Analytical and Bioanalytical Chemistry

, Volume 384, Issue 1, pp 145–154 | Cite as

Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging

  • Wolfram Steller
  • Jens Einenkel
  • Lars-Christian Horn
  • Ulf-Dietrich Braumann
  • Hans Binder
  • Reiner Salzer
  • Christoph KrafftEmail author
Paper in Forefront

Abstract

Infrared (IR) spectroscopic imaging coupled with microscopy has been used to investigate thin sections of cervix uteri encompassing normal tissue, precancerous structures, and squamous cell carcinoma. Methods for unsupervised distinction of tissue types based on IR spectroscopy were developed. One-hundred and twenty-two images of cervical tissue were recorded by an FTIR spectrometer with a 64×64 focal plane array detector. The 499,712 IR spectra obtained were grouped by an approach which used fuzzy C-means clustering followed by hierarchical cluster analysis. The resulting false color maps were correlated with the morphological characteristics of an adjacent section of hematoxylin and eosin-stained tissue. In the first step, cervical stroma, epithelium, inflammation, blood vessels, and mucus could be distinguished in IR images by analysis of the spectral fingerprint region (950–1480 cm−1). In the second step, analysis in the spectral window 1420–1480 cm−1 enables, for the first time, IR spectroscopic distinction between the basal layer, dysplastic lesions and squamous cell carcinoma within a particular sample. The joint application of IR microspectroscopic imaging and multivariate spectral processing combines diffraction-limited lateral optical resolution on the single cell level with highly specific and sensitive spectral classification on the molecular level. Compared with previous reports our approach constitutes a significant progress in the development of optical molecular spectroscopic techniques toward an additional diagnostic tool for the early histopathological characterization of cervical cancer.

Keywords

Cervix uteri Squamous cell carcinoma Infrared imaging Cluster analysis Tissue classification 

Abbreviations

IR

Infrared

Pap

Papanicolaou

H&E

Hematoxylin and eosin

FPA

Focal plane array

FT

Fourier transform

FCM

Fuzzy C-means

HCA

Hierarchical cluster analysis

Notes

Acknowledgement

W. Steller and C. Krafft are supported by the Volkswagen Foundation within the project “Molecular Endospectroscopy” of the program “Junior Research Groups at Universities”. U.-D. Braumann and H. Binder acknowledge financial support of the Deutsche Forschungsgemeinschaft under grant no. BIZ 6/1-2.

References

  1. 1.
    Dukor RK (2002) In: Chalmers JM, Griffiths PR (eds.) Handbook of Vibrational Spectroscopy. John Wiley and Sons Ltd., New York 3335–3361Google Scholar
  2. 2.
    Wood BR, Chiriboga L, Yee H, Quinn MA, McNaughton D, Diem M (2004) Gynecol Oncol 93:59–68CrossRefPubMedGoogle Scholar
  3. 3.
    Wong PTT, Lacelle S, Fung Kee Fung M, Sentermann M, Mikhael NZ (1995) Biospectroscopy 1:357–364CrossRefGoogle Scholar
  4. 4.
    Mordechai S, Sahu RK, Hammody Z, Mark S, Kantarovich K, Guterman H, Podshyvalov A, Goldstein J, Argov S (2004) J Microsc 215:86–91CrossRefPubMedMathSciNetGoogle Scholar
  5. 5.
    Chang JI, Huang YB, Wu PC, Chen CC, Huang SC, Tsai YH (2003) Gynecol Oncol 91:577–583CrossRefPubMedGoogle Scholar
  6. 6.
    Chiriboga L, Xie P, Yee H, Zarou D, Zakim D, Diem M (1998) Cell Mol Biol 44:219–229PubMedGoogle Scholar
  7. 7.
    Scully RE, Bonfiglio TA, Kurman RJ, Silverberg SG, Wilkinson EJ (1994) WHO—Histological typing of female genital tract tumors. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. 8.
    Zaino RJ, Ward S, Delgado G, Bundy B, Gore H, Fetter G, Ganjei P, Frauenhoffer E (1992) Cancer 69:1750–1758PubMedCrossRefGoogle Scholar
  9. 9.
    Tsuda H, Mikami Y, Kaku T, Akiyama F, Hasegawa T, Okada S, Hayashi I, Kasamatsu T (2003) Pathol Int 53:440–449CrossRefPubMedGoogle Scholar
  10. 10.
    Dumas P, Jamin N, Teillaud JL, Miller LM, Beccard B (2004) Faraday Discuss 126:289–302CrossRefPubMedGoogle Scholar
  11. 11.
    Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marcott C, Levin IW (1995) Anal Chem 67:3377–3381CrossRefPubMedGoogle Scholar
  12. 12.
    Kidder LH, Kalasinsky VF, Luke JL, Levin IW, Lewis EN (1997) Nature Medicine 3:235–237CrossRefPubMedGoogle Scholar
  13. 13.
    Potter K, Kidder LH, Levin IW, Lewis EN, Spencer RGS (2001) Arthritis and Rheumatism 44:846–855CrossRefPubMedGoogle Scholar
  14. 14.
    Camacho NP, West P, Torzilli PA, Mendelsohn R (2001) Biopolymers 62:1–8PubMedCrossRefGoogle Scholar
  15. 15.
    Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R (2001) J Bone Miner Res 16:893-900CrossRefGoogle Scholar
  16. 16.
    Fabian H, Lasch P, Boese M, Haensch W (2002) Biopolymers 67:354–357CrossRefPubMedGoogle Scholar
  17. 17.
    Krafft C, Salzer R, Soff G, Meyer-Hermann M (2005) Cytometry A 64A:53–61CrossRefGoogle Scholar
  18. 18.
    Fernandez DC, Bhargava R, Hewitt SM, Levin IW (2005) Nat Biotech 23:469–474CrossRefGoogle Scholar
  19. 19.
    Romeo M, Burden FR, Wood BR, Quinn MA, Tait B, McNaughton D (1998) Cell Mol Biol 44:179–187PubMedGoogle Scholar
  20. 20.
    Cohenford MA, Godwin TA, Cahn F, Bhandare P, Caputo TA, Rigas B (1997) Gynecol Oncol 66:59–65CrossRefPubMedGoogle Scholar
  21. 21.
    Shaw RA, Guijon FB, Paraskevas M, Ying SL, Mantsch HH (1999) Anal Quant Cytol Histol 21:292–302Google Scholar
  22. 22.
    Lasch P, Naumann D (1998) Cell Mol Biol 44:189–202PubMedGoogle Scholar
  23. 23.
    Horn LC, Fischer U, Bilek K (2001) Zentralbl Gynakol 123:255–265CrossRefPubMedGoogle Scholar
  24. 24.
    Tran TN, Wehrens R, Buydens LMC (2005) Chem Intell Lab Systems 77:3–17Google Scholar
  25. 25.
    Lasch P, Haensch W, Naumann D, Diem M (2004) Biochim Biophys Acta 1688:176–186PubMedGoogle Scholar
  26. 26.
    Wood BR, Quinn MA, Tait B, Romeo M (1998) Biospectroscopy 4:75–91CrossRefPubMedGoogle Scholar
  27. 27.
    Chiriboga L, Xie P, Yee H, Vigorita V, Zarou D, Zakim D, Diem M (1998) Biospectroscopy 4:47–53CrossRefPubMedGoogle Scholar
  28. 28.
    Romeo M, Wood BR, McNaughton D (2002) Vib Spectrosc 28:167–175CrossRefGoogle Scholar
  29. 29.
    Boydston-White S, Gopen T, Houser S, Bargonetti J, Diem M (1999) Biospectroscopy 5:219–227CrossRefPubMedGoogle Scholar
  30. 30.
    Diem M, Boydston-White S, Chiriboga L (1999) Applied Spectroscopy 53:148A–161ACrossRefGoogle Scholar
  31. 31.
    Hanahan D, Weinberg RA (2000) Cell 100:57–70CrossRefPubMedGoogle Scholar
  32. 32.
    Lasch P, Naumann D (1998) Cell Mol Biol 44:189–202PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Wolfram Steller
    • 1
  • Jens Einenkel
    • 2
  • Lars-Christian Horn
    • 3
  • Ulf-Dietrich Braumann
    • 4
  • Hans Binder
    • 4
  • Reiner Salzer
    • 1
  • Christoph Krafft
    • 1
    Email author
  1. 1.Institute for Analytical ChemistryDresden University of TechnologyDresdenGermany
  2. 2.Department of Obstetrics and GynecologyUniversity of LeipzigLeipzigGermany
  3. 3.Institute of PathologyUniversity of LeipzigLeipzigGermany
  4. 4.Interdisciplinary Centre for BioinformaticsUniversity of LeipzigLeipzigGermany

Personalised recommendations