Analytical and Bioanalytical Chemistry

, Volume 383, Issue 7–8, pp 1119–1126 | Cite as

Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine

  • P. Canosa
  • S. Morales
  • I. RodríguezEmail author
  • E. Rubí
  • R. Cela
  • M. Gómez
Original Paper


The degradation of 2-(2,4-dichlorophenoxy)-5-chlorophenol (triclosan) in chlorinated water samples was investigated. Sensitive determination of the parent compound and its transformation products was achieved by gas chromatography with mass spectrometry detection after sample concentration, using a solid-phase extraction sorbent and silylation of the target compounds. Experiments were accomplished using ultrapure water spiked with chlorine and triclosan concentrations in the low mg/l and ng/ml ranges respectively. Chlorination of the phenolic ring and cleavage of the ether bond were identified as the main triclosan degradation pathways. Both processes led to the production of two tetra- and a penta-chlorinated hydroxylated diphenyl ether, as well as 2,4-dichlorophenol. The formation of 2,3,4-trichlorophenol was not detected in any experiment; however, significant amounts of 2,4,6-trichlorophenol were noticed. All of these five compounds were also identified when triclosan was added to tap-water samples with free chlorine concentrations below 1 mg/l. Minor amounts of three di-hydroxylated phenols, containing from one to three atoms of chlorine in their structures, were also identified as unstable triclosan chlorination by-products. The analysis of several raw wastewater samples showed the co-existence of important concentrations of triclosan and its most stable by-products (2,4-dichlorophenol and 2,4,6-trichlorophenol), reinforcing the potential occurrence of the described transformations when products containing triclosan are mixed with chlorinated tap water.


Triclosan Chlorination by-products Chlorophenols SPE GC-MS 



This work has been financially supported by the Spanish DGICT (project BQU 2003-02090) and the Xunta de Galicia government (projects PGIDIT03TAM02E and PGIDIT04PXIC23701PN). P.C. acknowledges an FPU grant from the Spanish Ministry of Education. S.M. gratefully acknowledges financial support from Xunta de Galicia through a research scholarship.


  1. 1.
    Thompson RD (2001) J AOAC Int 84:815–822PubMedGoogle Scholar
  2. 2.
    Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J (2002) Chemosphere 46:1485–1489CrossRefPubMedGoogle Scholar
  3. 3.
    Singer H, Müller S, Tixier C, Pillonel L (2002) Environ Sci Technol 36:4998–5004CrossRefPubMedGoogle Scholar
  4. 4.
    McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff W (2002) Environ Toxicol Chem 21:1323–1329CrossRefPubMedGoogle Scholar
  5. 5.
    Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Environ Toxicol Chem 21:1338–1349CrossRefPubMedGoogle Scholar
  6. 6.
    Alaee M, D´Sa I, Bennett E, Letcher R (2003) Organohalogen Compd 62:136–138Google Scholar
  7. 7.
    Balmer ME, Poiger T, Droz C, Romanin K, Bergqvist P, Müller MD, Buser HR (2004) Environ Sci Technol 38:390–395CrossRefPubMedGoogle Scholar
  8. 8.
    Mezcua M, Gómez MJ, Ferrer I, Aguera A, Hernando MD, Fernández-Alba AR (2004) Anal Chim Acta 524:241–247CrossRefGoogle Scholar
  9. 9.
    Lores M, Llompart M, Sanchez L, Garcia C, Cela R (2005) Anal Bioanal Chem 381:1294–1298CrossRefPubMedGoogle Scholar
  10. 10.
    Kanetoshi A, Ogawa H, Katsura E, Kaneshina H (1987) J Chromatogr 389:139–153CrossRefPubMedGoogle Scholar
  11. 11.
    Onodera S, Ogawa M, Suzuki S (1987) J Chromatogr 392:267–275CrossRefPubMedGoogle Scholar
  12. 12.
    Rule KL, Ebbett VR, Vikesland PJ (2005) Environ Sci Technol 39:3176–3185CrossRefPubMedGoogle Scholar
  13. 13.
    Clesceri LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Water Works Association, Maryland, pp 461–465Google Scholar
  14. 14.
    Heberer T, Stan HJ (1997) Anal Chim Acta 341:21–34CrossRefGoogle Scholar
  15. 15.
    Rodríguez I, Gonzalez R, Rubi E, Cela R (2004) Anal Chim Acta 524:249–256CrossRefGoogle Scholar
  16. 16.
    Pinkston KE, Sedlak DL (2004) Environ Sci Technol 38:4019–4025CrossRefPubMedGoogle Scholar
  17. 17.
    Patnaik P, Yang M, Powers E (2000) American Laboratory 32:16–17Google Scholar
  18. 18.
    Ferrer I, Mezcua M, Gómez MJ, Thurman EM, Agüera A, Hernando MD, Fernández-Alba AR (2004) Rapid Commun Mass Spectrom 18:443–450CrossRefGoogle Scholar
  19. 19.
    Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Water Res 37:3145–3154CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • P. Canosa
    • 1
  • S. Morales
    • 2
  • I. Rodríguez
    • 1
    Email author
  • E. Rubí
    • 1
  • R. Cela
    • 1
  • M. Gómez
    • 3
  1. 1.Departamento de Química Analítica, Nutrición y Bromatología; Instituto de Investigación y Análisis AlimentarioUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Centro de Bioactivos QuímicosUniversidad Central de Las VillasSanta ClaraCuba
  3. 3.Labaqua S.A.Santiago de CompostelaSpain

Personalised recommendations