Analytical and Bioanalytical Chemistry

, Volume 383, Issue 6, pp 895–902 | Cite as

Interfacing liquid chromatography with atmospheric pressure MALDI-MS

  • Jürg M. Daniel
  • Victor V. Laiko
  • Vladimir M. Doroshenko
  • Renato Zenobi
Original Paper

Abstract

Two different strategies for coupling liquid chromatography with atmospheric pressure matrix assisted laser desorption/ionization (AP MALDI) are presented. The first method is flow-injection liquid AP UV-MALDI. Compared with previous similar research, the detection limit was improved 10 times to 8.3 fmol using a solution of 50 nM peptide with 25 mM α-cyano-4-hydroxycinnamic acid. The applicability of this method to measure oligosaccharides, actinomycin antibiotics, antibiotics, phosphopeptides, and proteins is demonstrated. The upper mass limit achieved with the current instrumentation is 6,500 Da (doubly charged cytochrome c). The feasibility of a second strategy based on single-droplet IR AP MALDI is demonstrated here. Aqueous peptide solutions were successfully measured by this method.

Keywords

Matrix assisted laser desorption/ionization IR ionization from solution IR matrix assisted laser desorption/ionization Liquid matrix Atmospheric pressure matrix assisted laser desorption/ionization 

Notes

Acknowledgements

We thank SESI (Columbia, MD, USA) and its team for the loan and support of the IR laser and JDS Uniphase and GMP SA for the loan of the Power Chip laser.

Partial financial support from the Swiss National Science Foundation (grant no. 200020-103616) is gratefully acknowledged.

References

  1. 1.
    Karas M, Bachmann D, Hillenkamp F (1985) Anal Chem 57:2935–2939CrossRefGoogle Scholar
  2. 2.
    Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Int J Mass Spectrom Ion Process 78:53–68CrossRefGoogle Scholar
  3. 3.
    Karas M, Hillenkamp F (1988) Anal Chem 60:2299–2301CrossRefPubMedGoogle Scholar
  4. 4.
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Rapid Commun Mass Spectrom 2:151–153CrossRefGoogle Scholar
  5. 5.
    Macha SF, Limbach PA, Savickas PJ (2000) J Am Soc Mass Spectrom 11:731–737CrossRefPubMedGoogle Scholar
  6. 6.
    Przybilla L, Brand JD, Yoshimura K, Rader HJ, Mullen K (2000) Anal Chem 72:4591–4597CrossRefPubMedGoogle Scholar
  7. 7.
    Armstrong DW, Zhang LK, He LF, Gross ML (2001) Anal Chem 73:3679–3686CrossRefPubMedGoogle Scholar
  8. 8.
    Lin YS, Chen YC (2002) Anal Chem 74:5793–5798CrossRefPubMedGoogle Scholar
  9. 9.
    Berkenkamp S, Kirpekar F, Hillenkamp F (1998) Science 281:260–262CrossRefPubMedGoogle Scholar
  10. 10.
    Von Seggern CE, Moyer SC, Cotter RJ (2003) Anal Chem 75:3212–3218CrossRefPubMedGoogle Scholar
  11. 11.
    Sze ETP, Chan TWD, Wang G (1998) J Am Soc Mass Spectrom 9:166–174CrossRefGoogle Scholar
  12. 12.
    Wei J, Buriak JM, Siuzdak G (1999) Nature 399:243–246CrossRefPubMedGoogle Scholar
  13. 13.
    Go EP, Prenni JE, Wei J, Jones A, Hall SC, Witkowska HE, Shen ZX, Siuzdak G (2003) Anal Chem 75:2504–2506CrossRefPubMedGoogle Scholar
  14. 14.
    Laiko VV, Baldwin MA, Burlingame AL (2000) Anal Chem 72:652–657CrossRefPubMedGoogle Scholar
  15. 15.
    Laiko VV, Moyer SC, Cotter RJ (2000) Anal Chem 72:5239–5243CrossRefPubMedGoogle Scholar
  16. 16.
    Doroshenko VM, Laiko VV, Taranenko NI, Berkout VD, Lee HS (2002) Int J Mass Spectrom 221:39–58CrossRefGoogle Scholar
  17. 17.
    Wolfender JL, Chu FX, Ball H, Wolfender F, Fainzilber M, Baldwin MA, Burlingame AL (1999) J Mass Spectrom 34:447–454CrossRefPubMedGoogle Scholar
  18. 18.
    Ring S, Rudich Y (2000) Rapid Commun Mass Spectrom 14:515–519CrossRefGoogle Scholar
  19. 19.
    Zöllner P, Stubiger G, Schmid E, Pittenauer E, Allmaier G (1997) Int J Mass Spectrom 169:99–109CrossRefGoogle Scholar
  20. 20.
    Laiko VV, Taranenko NI, Berkout VD, Yakshin MA, Prasad CR, Lee HS, Doroshenko VM (2002) J Am Soc Mass Spectrom 13:354–361CrossRefGoogle Scholar
  21. 21.
    Lawson SJ, Murray KK (2002) Rapid Commun Mass Spectrom 16:1248–1250CrossRefGoogle Scholar
  22. 22.
    Daniel JM, Ehala S, Friess SD, Zenobi R (2004) Analyst 129:574–578CrossRefPubMedGoogle Scholar
  23. 23.
    Turney K, Harrison WW (2004) Rapid Commun Mass Spectrom 18:629–635CrossRefGoogle Scholar
  24. 24.
    Nagra DS, Li L (1995) J Chromatogr A 711:235–245CrossRefGoogle Scholar
  25. 25.
    Tan PV, Taranenko NI, Laiko VV, Yakshin MA, Prasad CR, Doroshenko VM (2004) J Mass Spectrom 39:913–921CrossRefPubMedGoogle Scholar
  26. 26.
    Von Seggern CE, Zarek PE, Cotter RJ (2003) Anal Chem 75:6523–6530CrossRefGoogle Scholar
  27. 27.
    Laiko VV, Tan PV, Taranenko NI, Yakshin MA, Prasad CR, Doroshenko VM (2003) Proceedings of the 51st ASMS conference on mass spectrometry and allied topics, MontrealGoogle Scholar
  28. 28.
    Ding L, Sudakov M, Brancia FL, Giles R, Kumashiro S (2004) J Mass Spectrom 39:471–484CrossRefPubMedGoogle Scholar
  29. 29.
    Cramer R, Corless S (2001) Rapid Commun Mass Spectrom 22:2058–2066CrossRefGoogle Scholar
  30. 30.
    Laurell T, Wallman L, Nilsson J (1999) J Micromech Microeng 9:369–376CrossRefGoogle Scholar
  31. 31.
    Önnerfjord P, Nilsson J Wallman L, Laurell T, Marko-Varga G (1998) Anal Chem 70:4755–4760CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jürg M. Daniel
    • 1
  • Victor V. Laiko
    • 2
  • Vladimir M. Doroshenko
    • 2
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesSwiss Federal Institute of TechnologyZürichSwitzerland
  2. 2.MassTech Inc.ColumbiaUSA

Personalised recommendations