Analytical and Bioanalytical Chemistry

, Volume 383, Issue 6, pp 977–984 | Cite as

Classifying wine according to geographical origin via quadrupole-based ICP–mass spectrometry measurements of boron isotope ratios

  • Paul P. Coetzee
  • Frank Vanhaecke
Original Paper


The potential of quadrupole-based ICP–MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1–0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06–0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO3 was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP–QMS for their B-isotopic compositions. It was concluded that the 11B/10B ratios can be used to characterize wines from different geographical origins. Average 11B/10B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%.


ICP–mass spectrometry Boron isotope ratio Wine provenance 



The authors would like to thank the VINPRO representatives in Stellenbosch, Robertson and Swartland as well as the many producers who ultimately provided the samples from the South African wine regions. They would also like to thank the Research Fund of Ghent University (Flemish/South African bilateral scientific and technological cooperation, Project No. 011S2403), the South African National Research Foundation, Winetech (Project No. WW08/28) and the Fund for Scientific Research—Flanders (Research project No. G. 0037.01) for research funding.


  1. 1.
    Latkoczy C, Prohaska T, Stingeder G, Teschler-Nicola M (1998) J Anal Atom Spectrom 13:561–566Google Scholar
  2. 2.
    De Wannemaker G, Vanhaecke F, Moens L, Van Mele A, Thoen H (2000) J Anal Atom Spectrom 15:323–327Google Scholar
  3. 3.
    Schultheis G, Prohaska T, Stingeder G, Dietrich K, Jembrih–Simburger D, Schreiner M (2004) J Anal Atom Spectrom 19:838–843Google Scholar
  4. 4.
    Pillonel L, Badertscher R, Froidevaux P, Haberhauer G, Hölzl S, Horn P, Jakob A, Pfammatter E, Piantini U, Rossmann A, Tabacchi R, Bosset JO (2003) Lebensm Wiss Technol 36:615–623Google Scholar
  5. 5.
    Piasentier E, Valusso R, Camin F, Versini G (2003) Meat Sci 64:239–247CrossRefGoogle Scholar
  6. 6.
    Rossmann A, Lullmann C, Schmidt HL (1992) Z Lebensm Unters For 195:307–311Google Scholar
  7. 7.
    Parker IG, Kelly SD, Sharman M, Dennis MJ, Howie D (1998) Food Chem 63:423–428CrossRefGoogle Scholar
  8. 8.
    Kelly S, Parker I, Sharman M, Dennis J, Goodall I (1997) Food Chem 59:181–186CrossRefGoogle Scholar
  9. 9.
    Almeida CMR, Vasconcelos MTSD (2004) Food Chem 85:7–12CrossRefGoogle Scholar
  10. 10.
    Horn P, Schaaf P, Holbach B (1993) Z Lebensm Unters For 196:407–409Google Scholar
  11. 11.
    Barbaste M, Halicz L, Galy A, Medina B, Emteborg H, Adams FC, Lobinski R (2001) Talanta 54:307–317CrossRefGoogle Scholar
  12. 12.
    Larcher R, Nicolini G, Pangrazzi P (2003) J Agric Food Chem 51:5956–5961CrossRefPubMedGoogle Scholar
  13. 13.
    Kawasaki A, Oda H, Hirata T (2002) Soil Sci Nutr 48:635–640Google Scholar
  14. 14.
    Fortunato G, Mumic K, Wunderli S, Pillonel L, Bosset JO, Gremauad G (2004) J Anal At Spectrom 19:227–234CrossRefGoogle Scholar
  15. 15.
    Heumann KG, Gallus SM, Rädling G, Vogl J (1998) J Anal Atom Spectrom 13:1001–1008Google Scholar
  16. 16.
    Becker JS, Dietze H-J (1999) Fresen J Anal Chem 364:482–488Google Scholar
  17. 17.
    Boulyga SF, Segal I, Platzner TI, Halicz L, Becker JS (2002) Int J Mass Spectrom 218:245–253CrossRefGoogle Scholar
  18. 18.
    Al-Ammar A, Reitzerová E, Barnes R (2000) Spectrochim Acta B 55:1861–1867CrossRefGoogle Scholar
  19. 19.
    Bandura DR, Tanner SD (1999) Atom Spectroc 20:69–72Google Scholar
  20. 20.
    Bandura DR, Baranov VI, Tanner SD (2000) J Anal Atom Spectrom 15:921–928Google Scholar
  21. 21.
    Begley IS, Sharp BL (1997) J Anal Atom Spectrom 12:395–402Google Scholar
  22. 22.
    Becker JS, Dietze H-J (2000) Fresen J Anal Chem 368:23–30Google Scholar
  23. 23.
    Krachler M, Le Roux G, Kober B, Shotyk W (2004) J Anal Atom Spectrom 19:354–361Google Scholar
  24. 24.
    Wieser ME, Iyer SS, Krouse, HR, Cantagallo MI (2001) Appl Geochem 16:317–322Google Scholar
  25. 25.
    Serra F, Guillou G, Reniero F, Ballarin L, Cantagallo MI, Wieser MI, Iyer SS, Heberger K, Vanhaecke F (2005) Rapid Commun Mass Spectrom 19:2111–2115CrossRefGoogle Scholar
  26. 26.
    Vengosh A, Heumann KG, Jurashe S, Kasher R (1994) Environ Sci Tech 28:1968–1974CrossRefGoogle Scholar
  27. 27.
    Eisenhut S, Heumann KG, Vengosh A (1996) Fresen J Anal Chem 354:903–909Google Scholar
  28. 28.
    Eisenhut S, Huemann KG (1997) Fresen J Anal Chem 359:375–377Google Scholar
  29. 29.
    Vengosh A, Barth S, Huemann KG, Eisenhut S (1999) Acta Hydroch Hydrob 27:416–421Google Scholar
  30. 30.
    Vanderpool RA, Johnson PE (1992) J Agric Food Chem 40:462–466CrossRefGoogle Scholar
  31. 31.
    Coetzee PP, Steffens F, Eiselen RJ, Augustyn OP, Balcaen L, Vanhaecke F (2005) J Agric Food Chem 53:5060–5066CrossRefPubMedGoogle Scholar
  32. 32.
    Longerich HP, Fryer BJ, Strong BF (1987) Spectrochim Acta B 42:39–48CrossRefGoogle Scholar
  33. 33.
    Ketterer ME, Peters MJ, Tisdale PJ (1991) J Anal Atom Spectrom 6:439–443Google Scholar
  34. 34.
    Roehl R, Gomez J (1995) J Anal Atom Spectrom 10:15–23Google Scholar
  35. 35.
    Koirtyohann SR (1994) Spectrochim Acta 49B:1305–1311Google Scholar
  36. 36.
    Vanhaecke F, De Wannemacker G, Moens L, Dams R, Latkoczy C, Prohaska T, Stingeder G (1998) J Anal Atom Spectrom 13:567–571Google Scholar
  37. 37.
    Almeida CMR, Vasconcelos MDTS (1999) J Anal Atom Spectrom 14:1815–1821Google Scholar
  38. 38.
    Bellato ACS, Giné MF, Menegário AA (2004) Microchem J 77:119–122CrossRefGoogle Scholar
  39. 39.
    Smith FG, Wiederin DR, Houk RS (1991) Anal Chim Acta 248:229–234CrossRefGoogle Scholar
  40. 40.
    Smith FG, Wiedrin DR, Houk RS, Egan CB, Serfass RE (1991) Anal Chim Acta 248:229–234CrossRefGoogle Scholar
  41. 41.
    Lemarchand D, Gaillardet J, Gopel C, Manhes G (2002) Chem Geol 182:323–334CrossRefGoogle Scholar
  42. 42.
    Aggarwal JK, Sheppard D, Mezger K, Pernicka E (2003) Chem Geol 199:331–342CrossRefGoogle Scholar
  43. 43.
    Eurachem/Citac (2000) Quantifying uncertainty in analytical measurements, 2nd edn. Eurachem/Citac, Berlin (available at, last accessed 25th September 2005)
  44. 44.
    Vanhaecke F, De Wannemacker G, Moens L, Van den haute P (2001) Fresen J Anal Chem 371:915–920Google Scholar
  45. 45.
    Lécuyer C, Grandjean P, Reynard B, Albarède F, Telouk P (2002) Chem Geol 186:45–55CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Laboratory of Analytical Chemistry Ghent UniversityInstitute for Nuclear SciencesGhentBelgium

Personalised recommendations