Analytical and Bioanalytical Chemistry

, Volume 383, Issue 6, pp 1009–1013 | Cite as

Voltammetric analysis using a self-renewable non-mercury electrode

  • Peter SurmannEmail author
  • Hanan Zeyat
Short Communication


Galinstan is a new kind of electrode material and the galinstan electrode is a promising alternative to the commonly used mercury electrodes. The eutectic mixture of gallium, indium and tin is liquid at room temperature (m.p. −19°C) and its voltammetric behaviour is similar to that of mercury. The potential windows of use were determined for different pH values and are similar to those obtained with conventional mercury electrodes. Furthermore, the high hydrogen overpotential, which is characteristic for mercury, can be observed when galinstan is used as electrode material. Galinstan can be employed as a liquid electrode in the voltammetric analysis of different metal ions, such as lead and cadmium, in different supporting electrolytes. Our results indicate that the non-toxic liquid alloy galinstan could therefore become immensely important in electrochemical research as a potential surrogate material for mercury.


Galinstan Voltammetry Potential window 



hanging mercury drop electrode


dropping mercury electrode


static mercury drop electrode


mercury film electrode


hanging galinstan drop electrode



We are exceedingly grateful to Mr Haribert Schmitt from Geratherm Medical, and would like to thank him for his cooperation and for providing us generously with galinstan.


  1. 1.
    Kemula W, Kublik K (1958) Z Anal Chim Acta 18:81–82CrossRefGoogle Scholar
  2. 2.
    Berzins T, Delahay P (1955) J Am Chem Soc 77:6448–6453CrossRefGoogle Scholar
  3. 3.
    Müller RH, Petras JF (1938) J Am Chem Soc 60:2990–2993CrossRefGoogle Scholar
  4. 4.
    Lingane JJ, Kolthoff IM (1939) J Am Chem Soc 61:825–834CrossRefGoogle Scholar
  5. 5.
    Peterson WM (1979) Am Lab (Fairfield Conn) 11:69–78Google Scholar
  6. 6.
    Anderson JE, Bond AM, Jones RD (1981) Anal Chem 53:1016–1020CrossRefGoogle Scholar
  7. 7.
    Moros SA (1962) Anal Chem 34:1584–1587CrossRefGoogle Scholar
  8. 8.
    Copeland TR, Christie JH, Skogerboe RK, Osteryoung RA (1973) Anal Chem 45:995–996CrossRefGoogle Scholar
  9. 9.
    Shi K, Shiu KK (2002) Anal Chem 74:879–885CrossRefPubMedGoogle Scholar
  10. 10.
    Ravichandran K, Baldwin RP (1984) Anal Chem 56:1744–1747CrossRefGoogle Scholar
  11. 11.
    Surmann P, Wenders G (1993) Fresenius Z Anal Chem 346:914–918CrossRefGoogle Scholar
  12. 12.
    Surmann P, Wenders G (1996) Fresenius Z Anal Chem 354:296–298Google Scholar
  13. 13.
    Zoski CG (2003) J Phys Chem B 107:6401–6405CrossRefGoogle Scholar
  14. 14.
    Möllencamp H, Huntemann H, Jansen W (1999) Monatshefte für Chemie 130:741–751Google Scholar
  15. 15.
    Karlsson M, Nolkrantz K, Davidson MJ, Strömbberg A, Ryttsen F, Akerman B, Orwar O (2000) Anal Chem 72:5857–5862CrossRefPubMedGoogle Scholar
  16. 16.
    Knoblauch M, Hibberd JM, Gray JC, van Bel AJE (1999) Nature Biotechnology 17:906–909CrossRefPubMedGoogle Scholar
  17. 17.
    Speckbrock et al (1998) US patent 5800060
  18. 18.
    American Conference of Governmental Industrial Hygienists (1994) Occupation Safety and Health Reporter 26–35Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Pharmacy, Pharmaceutical ChemistryFreie Universität BerlinBerlinGermany

Personalised recommendations